Math Problem Statement

знайдіть проміжки зростання та спадання фунції

знайдіть проміжки зростання та спадання фунції

Solution

To find the intervals of increase and decrease for the function given:

y=x24xy = x^2 - 4x

Step 1: Find the first derivative

We take the derivative of the function y=x24xy = x^2 - 4x to find the slope of the function at any point.

dydx=2x4\frac{dy}{dx} = 2x - 4

Step 2: Set the first derivative equal to zero

Setting the derivative equal to zero will help us find critical points, which are potential points where the function changes from increasing to decreasing or vice versa.

2x4=02x - 4 = 0

Solving for xx:

2x=42x = 4 x=2x = 2

Step 3: Analyze the intervals

Now, we will analyze the behavior of the derivative on either side of x=2x = 2. We choose test points from the intervals (,2)(-\infty, 2) and (2,)(2, \infty).

  • For x<2x < 2 (e.g., x=0x = 0): 2x4=2(0)4=42x - 4 = 2(0) - 4 = -4 The derivative is negative, so the function is decreasing in this interval.

  • For

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Derivative
Critical Points
Intervals of Increase and Decrease

Formulas

y = x^2 - 4x
First Derivative: dy/dx = 2x - 4

Theorems

First Derivative Test

Suitable Grade Level

Grades 10-12