Math Problem Statement
Найти интервал сходимоисти степенного ряда. Исследовать поведение ряда на концах интервала сходимости.
Somme infini, n=1 de ((2n^2 + 1)/(3^n (3n^4 + 5)) (x + 6)^n.
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Series and Sequences
Power Series
Convergence of Series
Formulas
Radius of Convergence using the Ratio Test
Limit of ratio of consecutive terms
Theorems
D'Alembert's Ratio Test
Cauchy's Convergence Test
Suitable Grade Level
Undergraduate Mathematics
Related Recommendation
Interval of Convergence for ∑(2x)^n / (3n + 1)
Interval of Convergence for Power Series ∑ (3x - 1)^n / (n^3 + n)
Interval of Convergence of the Series ∑ (n! / n^n) (x+3)^n using the Ratio Test
Find Radius and Interval of Convergence for Series P ∞ n=1 ((-3)^n/n) x^n
Radius of Convergence of Power Series Using Ratio Test