Math Problem Statement

Bestimmen Sie die gemeinsamen Punkte der Geraden g: \( \mathbf{x} = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} + t \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} \) und der Ebene E. Bestimmen Sie zunächst eine Koordinatengleichung von E.

Solution

The task involves finding the intersection points between a line gg and a plane EE. The parametric equation of the line gg is given as:

x=(231)+t(112)\mathbf{x} = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} + t \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}

And the equation of the plane EE is provided in a parametric form:

x=(213)+r(411)+s(121)\mathbf{x} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} + r \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} + s \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}

To find the intersection points, we need to set the parametric equation of the line equal to the parametric equation of the plane and solve for tt, rr, and ss.

Substituting the equation of the line into the equation of the plane, we get:

(231)+t(112)=(213)+r(411)+s(121)\begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} + t \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} + r \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix} + s \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}

We will solve this system to find the values of tt, rr, and ss. Let's start the calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Analytical Geometry
Line and Plane Intersection
Parametric Equations

Formulas

Parametric equation of a line: \( \mathbf{x} = \mathbf{p} + t \mathbf{d} \)
Parametric form of a plane equation

Theorems

Intersection of a Line and Plane

Suitable Grade Level

Grades 11-12 (or equivalent)