Math Problem Statement

Integration of 1/(sinx+cosx)

Solution

To integrate 1sinx+cosxdx\int \frac{1}{\sin x + \cos x} \, dx, we use substitution and trigonometric identities to simplify the expression.

Solution:

Step 1: Simplify the denominator using a substitution

We know: sinx+cosx=2sin(x+π4),\sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right), since sinx+cosx\sin x + \cos x can be rewritten using the angle addition formula.

Step 2: Substitution

Let: t=x+π4.t = x + \frac{\pi}{4}. This gives: sinx+cosx=2sintanddx=dt.\sin x + \cos x = \sqrt{2} \sin t \quad \text{and} \quad dx = dt.

The integral becomes: 1sinx+cosxdx=12sintdt=12csctdt.\int \frac{1}{\sin x + \cos x} \, dx = \int \frac{1}{\sqrt{2} \sin t} \, dt = \frac{1}{\sqrt{2}} \int \csc t \, dt.

Step 3: Integral of csct\csc t

The integral of csct\csc t is: csctdt=lncsctcott+C.\int \csc t \, dt = \ln|\csc t - \cot t| + C.

Thus: 12csctdt=12lncsctcott+C.\frac{1}{\sqrt{2}} \int \csc t \, dt = \frac{1}{\sqrt{2}} \ln|\csc t - \cot t| + C.

Step 4: Back-substitution

Return to the original variable xx: csct=1sint=2sin(x+π/4),\csc t = \frac{1}{\sin t} = \frac{\sqrt{2}}{\sin(x + \pi/4)}, and: cott=costsint=cos(x+π/4)sin(x+π/4).\cot t = \frac{\cos t}{\sin t} = \frac{\cos(x + \pi/4)}{\sin(x + \pi/4)}.

Thus, the final answer is: 1sinx+cosxdx=12ln2sin(x+π/4)cos(x+π/4)sin(x+π/4)+C.\int \frac{1}{\sin x + \cos x} \, dx = \frac{1}{\sqrt{2}} \ln\left|\frac{\sqrt{2}}{\sin(x + \pi/4)} - \frac{\cos(x + \pi/4)}{\sin(x + \pi/4)}\right| + C.

This simplifies further into: 1sinx+cosxdx=12ln1cos(x+π/4)sin(x+π/4)+C.\int \frac{1}{\sin x + \cos x} \, dx = \frac{1}{\sqrt{2}} \ln\left|\frac{1 - \cos(x + \pi/4)}{\sin(x + \pi/4)}\right| + C.


Would you like a more detailed explanation or simplification of any step?

Related Questions:

  1. What is the integral of 1sinxcosxdx\int \frac{1}{\sin x - \cos x} \, dx?
  2. How do trigonometric substitutions work in integrals?
  3. Can this integral be solved by a different method?
  4. How does the substitution u=tan(x/2)u = \tan(x/2) help solve integrals with trigonometric expressions?
  5. What is the geometrical interpretation of sinx+cosx\sin x + \cos x?

Tip:

When solving trigonometric integrals, identifying common identities like sinx+cosx=2sin(x+π/4)\sin x + \cos x = \sqrt{2} \sin(x + \pi/4) simplifies the process greatly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Trigonometric Identities
Substitution Method

Formulas

\(\sin x + \cos x = \sqrt{2} \sin(x + \pi/4)\)
\(\int \csc t \, dt = \ln|\csc t - \cot t| + C\)

Theorems

Angle Addition Formula
Trigonometric Substitution Theorem

Suitable Grade Level

Undergraduate Calculus (Grade 11-12 or College Level)