Math Problem Statement

Beräkna alla primitiva funktioner F till cos(4x) + sin(x).

Solution

The problem asks to calculate all the antiderivatives (primitive functions) FF of cos(4x)+sin(x)\cos(4x) + \sin(x).

To solve this, we need to integrate the function f(x)=cos(4x)+sin(x)f(x) = \cos(4x) + \sin(x).

Step-by-step solution:

  1. Integral of cos(4x)\cos(4x): cos(4x)dx=14sin(4x)\int \cos(4x) \, dx = \frac{1}{4} \sin(4x) (Using the standard rule for integrating cos(ax)\cos(ax): cos(ax)dx=1asin(ax)\int \cos(ax) \, dx = \frac{1}{a} \sin(ax))

  2. Integral of sin(x)\sin(x): sin(x)dx=cos(x)\int \sin(x) \, dx = -\cos(x) (This is a standard integral for sin(x)\sin(x)).

  3. Combining the two integrals: (cos(4x)+sin(x))dx=14sin(4x)cos(x)+C\int (\cos(4x) + \sin(x)) \, dx = \frac{1}{4} \sin(4x) - \cos(x) + C where CC is the constant of integration.

Final Answer:

F(x)=14sin(4x)cos(x)+CF(x) = \frac{1}{4} \sin(4x) - \cos(x) + C

Let me know if you'd like further details or clarifications!

Related Questions:

  1. What is the derivative of 14sin(4x)cos(x)\frac{1}{4} \sin(4x) - \cos(x)?
  2. How do you integrate cos(4x)\cos(4x) with different limits?
  3. Can you generalize the integral cos(ax)dx\int \cos(ax) \, dx?
  4. How would the integration change if the function was cos(4x)sin(x)\cos(4x) - \sin(x)?
  5. How do we find definite integrals for cos(4x)+sin(x)\cos(4x) + \sin(x) between specific bounds?

Tip:

Always remember to add the constant of integration CC when calculating indefinite integrals.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Integration
Trigonometric Functions

Formulas

∫cos(ax) dx = (1/a)sin(ax)
∫sin(x) dx = -cos(x)

Theorems

Basic Integration Formulas

Suitable Grade Level

University/College