Math Problem Statement

Evaluate the integral ∫ (2x / (1 + 3x^2)) dx.

Solution

The integral provided in the image is:

2x1+3x2dx\int \frac{2x}{1 + 3x^2} \, dx

Solution:

  1. Substitution Method: Let u=1+3x2u = 1 + 3x^2. Then, the derivative of uu with respect to xx is: dudx=6x    du=6xdx    xdx=16du.\frac{du}{dx} = 6x \quad \implies \quad du = 6x \, dx \quad \implies \quad x \, dx = \frac{1}{6} \, du.

    Substituting uu into the integral: 2x1+3x2dx=2u16du=131udu.\int \frac{2x}{1 + 3x^2} \, dx = \int \frac{2}{u} \cdot \frac{1}{6} \, du = \frac{1}{3} \int \frac{1}{u} \, du.

  2. Integrate: The integral of 1u\frac{1}{u} is lnu\ln|u|. Thus: 131udu=13lnu+C.\frac{1}{3} \int \frac{1}{u} \, du = \frac{1}{3} \ln|u| + C.

  3. Back-substitute uu: Recall u=1+3x2u = 1 + 3x^2. Substituting back: 2x1+3x2dx=13ln1+3x2+C.\int \frac{2x}{1 + 3x^2} \, dx = \frac{1}{3} \ln|1 + 3x^2| + C.

Final Answer:

2x1+3x2dx=13ln(1+3x2)+C.\int \frac{2x}{1 + 3x^2} \, dx = \frac{1}{3} \ln(1 + 3x^2) + C.

Let me know if you'd like further details or have any questions! Here are related questions for you to explore:

  1. How does substitution work for more complex integrals?
  2. Why is the absolute value used in lnu\ln|u| during integration?
  3. What other methods can solve this integral, besides substitution?
  4. How do we handle definite integrals for this problem?
  5. Can this integral be solved using partial fractions?

Tip: Substitution is a powerful technique—look for expressions where the derivative of part of the denominator or numerator is present elsewhere in the integral.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Substitution Method

Formulas

∫ (1/u) du = ln|u| + C
Substitution: u = g(x), du = g'(x) dx

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Grades 11-12