Math Problem Statement

Answer S x²(2x³+1)⁴ dx

Just like the method in given picture

Evaluate the integral: \( \int x^2(2x^3 + 1)^4 \, dx \)

Solution

The method in the image uses substitution and power rules for integration. Let's apply the same steps to solve the integral x2(2x3+1)4dx\int x^2(2x^3 + 1)^4 \, dx:

Step 1: Substitution

Let’s choose a substitution for uu:

  • Define u=2x3+1u = 2x^3 + 1.
  • Then, differentiate uu: dudx=6x2ordu=6x2dx\frac{du}{dx} = 6x^2 \quad \text{or} \quad du = 6x^2 \, dx This matches the x2dxx^2 \, dx term in the original integral, so we can rewrite: x2dx=16dux^2 \, dx = \frac{1}{6} \, du

Step 2: Rewrite the Integral

Now substitute into the original integral: x2(2x3+1)4dx=(u4)16du=16u4du\int x^2(2x^3 + 1)^4 \, dx = \int (u^4) \cdot \frac{1}{6} \, du = \frac{1}{6} \int u^4 \, du

Step 3: Integrate

Use the power rule for integration: u4du=u55+C\int u^4 \, du = \frac{u^5}{5} + C Thus, the integral becomes: 16u55+C=130u5+C\frac{1}{6} \cdot \frac{u^5}{5} + C = \frac{1}{30} u^5 + C

Step 4: Substitute Back

Substitute back u=2x3+1u = 2x^3 + 1: 130(2x3+1)5+C\frac{1}{30} (2x^3 + 1)^5 + C

Final Answer:

x2(2x3+1)4dx=130(2x3+1)5+C\int x^2(2x^3 + 1)^4 \, dx = \frac{1}{30} (2x^3 + 1)^5 + C


Do you have any questions or need further clarification?

Relative Questions:

  1. How does substitution work in integration?
  2. Can we use this method for trigonometric integrals?
  3. What happens if the exponent is negative or a fraction in substitution?
  4. How do we handle more complex expressions for uu?
  5. Could integration by parts be used here instead?

Tip:

Always check the differential after substitution to ensure the new integrand simplifies correctly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Substitution in Integration
Power Rule in Integration

Formulas

Substitution: u = 2x^3 + 1, du = 6x^2 dx
Power Rule: \( \int u^n \, du = \frac{u^{n+1}}{n+1} + C \)

Theorems

Integration by Substitution
Power Rule

Suitable Grade Level

Grades 11-12, University Level Calculus