Math Problem Statement

Evaluate the integral \( \int x(x-2)^5 \, dx \).

Solution

The integral given in the image is:

x(x2)5dx\int x(x-2)^5 \, dx

Solution:

To solve this, we can use the substitution method.

  1. Let u=x2u = x - 2.
    Then, du=dxdu = dx, and x=u+2x = u + 2.

  2. Substitute into the integral:

    x(x2)5dx=(u+2)u5du\int x (x-2)^5 \, dx = \int (u+2)u^5 \, du

  3. Expand (u+2)u5(u+2)u^5:

    (u+2)u5=u6+2u5(u+2)u^5 = u^6 + 2u^5

  4. Now the integral becomes:

    u6du+2u5du\int u^6 \, du + 2 \int u^5 \, du

  5. Integrate term by term:

    u6du=u77,u5du=u66\int u^6 \, du = \frac{u^7}{7}, \quad \int u^5 \, du = \frac{u^6}{6}

    So:

    u6du+2u5du=u77+2u66\int u^6 \, du + 2 \int u^5 \, du = \frac{u^7}{7} + \frac{2u^6}{6}

    Simplify:

    =u77+u63= \frac{u^7}{7} + \frac{u^6}{3}

  6. Substitute back u=x2u = x-2:

    u77+u63=(x2)77+(x2)63\frac{u^7}{7} + \frac{u^6}{3} = \frac{(x-2)^7}{7} + \frac{(x-2)^6}{3}

  7. Add the constant of integration CC:

    x(x2)5dx=(x2)77+(x2)63+C\int x(x-2)^5 \, dx = \frac{(x-2)^7}{7} + \frac{(x-2)^6}{3} + C

Final Answer:

x(x2)5dx=(x2)77+(x2)63+C\boxed{\int x(x-2)^5 \, dx = \frac{(x-2)^7}{7} + \frac{(x-2)^6}{3} + C}


Would you like me to explain any specific part in more detail or verify the solution step-by-step?

Related Questions:

  1. How does substitution help simplify integrals like this?
  2. Can this integral be solved without substitution? If so, how?
  3. What is the significance of the constant of integration CC?
  4. How do you check if the final solution is correct?
  5. What are other methods to approach this type of polynomial integral?

Tip:

Always double-check the substitution step and back-substitute carefully to avoid missing terms!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Substitution Method
Polynomial Integration

Formulas

\( \int u^n \, du = \frac{u^{n+1}}{n+1} + C \)

Theorems

Substitution Method in Integration

Suitable Grade Level

Undergraduate Calculus