Math Problem Statement

После подстановки e^{2x} = t, какой вид принимает интеграл \( \int_{-\frac{1}{2} \ln 3}^{0} \frac{dx}{3 + e^{2x}} \)?

Solution

The problem shown in the image asks how the given integral changes after making the substitution e2x=te^{2x} = t.

The original integral is:

12ln30dx3+e2x\int_{-\frac{1}{2} \ln 3}^{0} \frac{dx}{3 + e^{2x}}

Step-by-Step Solution:

  1. Substitution: e2x=te^{2x} = t Differentiating this with respect to xx: 2e2xdx=dtordx=dt2t2e^{2x}dx = dt \quad \text{or} \quad dx = \frac{dt}{2t}

  2. Changing the limits of integration:

    For x=0x = 0: e2(0)=1t=1e^{2(0)} = 1 \quad \Rightarrow \quad t = 1

    For x=12ln3x = -\frac{1}{2} \ln 3: e2(12ln3)=eln3=13t=13e^{2 \left(-\frac{1}{2} \ln 3\right)} = e^{-\ln 3} = \frac{1}{3} \quad \Rightarrow \quad t = \frac{1}{3}

  3. Substituting into the integral:

    The integral becomes: 131dt2t3+t\int_{\frac{1}{3}}^1 \frac{\frac{dt}{2t}}{3 + t} This simplifies to: 12131dtt(3+t)\frac{1}{2} \int_{\frac{1}{3}}^1 \frac{dt}{t(3 + t)}

Thus, the integral after substitution takes the form: 12131dtt(3+t)\frac{1}{2} \int_{\frac{1}{3}}^1 \frac{dt}{t(3+t)}

This matches the third option in the list.

Answer:

The correct option is: 12131dtt(3+t)\frac{1}{2} \int_{\frac{1}{3}}^1 \frac{dt}{t(3+t)}

Let me know if you would like more details, and here are some related questions for further practice:

  1. How do you compute the integral dxex+1\int \frac{dx}{e^x + 1}?
  2. What happens when you substitute ex=te^x = t in an integral with a different exponent?
  3. How do you handle integrals with logarithmic limits like lnalnbf(x)dx\int_{-\ln a}^{\ln b} f(x) dx?
  4. What are common techniques for solving integrals involving exponential functions?
  5. How do you find the derivative of functions involving natural logarithms?

Tip: Always remember to adjust the limits of integration when making substitutions!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Definite Integration
Substitution Method

Formulas

Substitution: e^{2x} = t
Derivative: dx = \frac{dt}{2t}
Integral Transformation: \int_{a}^{b} f(x) dx = \int_{c}^{d} g(t) dt

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Undergraduate Mathematics