Math Problem Statement

Solve the integral of \(\tan\left(\frac{x}{2}\right) dx\).

Solution

This is an integral of tan(x2)dx\int \tan\left(\frac{x}{2}\right) dx. Let's solve it step by step.


Solution:

  1. Use the substitution:
    Let u=x2u = \frac{x}{2}.
    Then, du=12dxdu = \frac{1}{2}dx, or equivalently dx=2dudx = 2du.

    The integral becomes: tan(x2)dx=tan(u)2du=2tan(u)du\int \tan\left(\frac{x}{2}\right) dx = \int \tan(u) \cdot 2 du = 2 \int \tan(u) du

  2. Integral of tan(u)\tan(u):
    Recall that: tan(u)du=lncos(u)+C\int \tan(u) du = -\ln|\cos(u)| + C

    So: 2tan(u)du=2lncos(u)+C2 \int \tan(u) du = -2 \ln|\cos(u)| + C

  3. Back-substitute u=x2u = \frac{x}{2}:
    Replace uu with x2\frac{x}{2}: 2lncos(u)+C=2lncos(x2)+C-2 \ln|\cos(u)| + C = -2 \ln\left|\cos\left(\frac{x}{2}\right)\right| + C

Final Answer:

tan(x2)dx=2lncos(x2)+C\int \tan\left(\frac{x}{2}\right) dx = -2 \ln\left|\cos\left(\frac{x}{2}\right)\right| + C


Would you like a deeper explanation or clarification of any step?


Related Questions:

  1. How do we derive the integral of tan(u)\tan(u)?
  2. What are other substitution techniques for trigonometric integrals?
  3. How can we verify the result by differentiation?
  4. What happens if we write tan(u)\tan(u) in terms of sin(u)\sin(u) and cos(u)\cos(u)?
  5. Can this integral be evaluated numerically for a specific value of xx?

Tip:

When solving integrals involving trigonometric functions, substitution is often a powerful tool to simplify the expression!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Substitution
Trigonometric Integrals

Formulas

\int \tan(u) du = -\ln|\cos(u)| + C

Theorems

Substitution method

Suitable Grade Level

Grades 11-12