Math Problem Statement

tan3xdx\int\tan^3x\mathrm{dx}

Solution

To evaluate the integral tan3xdx\int \tan^3x \, \mathrm{d}x, we can start by rewriting tan3x\tan^3x as tanxtan2x\tan x \cdot \tan^2x, and then express tan2x\tan^2x in terms of sec2x\sec^2x using the identity:

tan2x=sec2x1\tan^2x = \sec^2x - 1

Thus, we have:

tan3x=tanx(sec2x1)\tan^3x = \tan x (\sec^2x - 1)

Now, the integral becomes:

tan3xdx=tanx(sec2x1)dx\int \tan^3x \, \mathrm{d}x = \int \tan x (\sec^2x - 1) \, \mathrm{d}x

We can split this into two integrals:

tanx(sec2x1)dx=tanxsec2xdxtanxdx\int \tan x (\sec^2x - 1) \, \mathrm{d}x = \int \tan x \sec^2x \, \mathrm{d}x - \int \tan x \, \mathrm{d}x

First Integral: tanxsec2xdx\int \tan x \sec^2x \, \mathrm{d}x

For this integral, use substitution: Let u=tanxu = \tan x, so dudx=sec2x\frac{du}{dx} = \sec^2x.

This simplifies the first integral to:

udu=u22=tan2x2\int u \, \mathrm{d}u = \frac{u^2}{2} = \frac{\tan^2x}{2}

Second Integral: tanxdx\int \tan x \, \mathrm{d}x

The integral of tanx\tan x is:

tanxdx=lnsecx+C\int \tan x \, \mathrm{d}x = \ln|\sec x| + C

Combining the Results

Now, combining both parts, we get:

tan3xdx=tan2x2lnsecx+C\int \tan^3x \, \mathrm{d}x = \frac{\tan^2x}{2} - \ln|\sec x| + C

Thus, the final answer is:

tan2x2lnsecx+C\boxed{\frac{\tan^2x}{2} - \ln|\sec x| + C}


Would you like a breakdown of any part or additional details?

Here are 5 related questions:

  1. How do you integrate tan2xdx\int \tan^2x \, \mathrm{d}x?
  2. How do you handle the integral sec3xdx\int \sec^3x \, \mathrm{d}x?
  3. Can you solve cot3xdx\int \cot^3x \, \mathrm{d}x using a similar method?
  4. What is the general method for integrating powers of trigonometric functions?
  5. Can substitution always be used for integrating trigonometric expressions?

Tip: Memorizing key trigonometric identities (like tan2x=sec2x1\tan^2x = \sec^2x - 1) can simplify many integration problems!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Integration
Trigonometric Identities
Substitution Method

Formulas

\( \int \tan^3x \, \mathrm{d}x \)
Trigonometric identity: \( \tan^2x = \sec^2x - 1 \)
Substitution: \( u = \tan x \), \frac{du}{dx} = \sec^2x \)
Basic integral: \( \int \tan x \, \mathrm{d}x = \ln |\sec x| \)

Theorems

Trigonometric Identity
Substitution in Integration

Suitable Grade Level

Grades 11-12 (or equivalent to Calculus 1)