Math Problem Statement

can you find the integral of this function sqrt(x^2-1)

Solution

To find the integral of x21\sqrt{x^2 - 1}, we can use trigonometric substitution.

Step-by-step process:

  1. Substitute: We recognize that x21x^2 - 1 suggests a trigonometric identity. A good substitution is: x=sec(θ)becausesec2(θ)1=tan2(θ)x = \sec(\theta) \quad \text{because} \quad \sec^2(\theta) - 1 = \tan^2(\theta)

  2. Differentiating x=sec(θ)x = \sec(\theta): dx=sec(θ)tan(θ)dθdx = \sec(\theta) \tan(\theta) \, d\theta

  3. Rewrite the integrand: Now, express the square root in terms of θ\theta: x21=sec2(θ)1=tan2(θ)=tan(θ)\sqrt{x^2 - 1} = \sqrt{\sec^2(\theta) - 1} = \sqrt{\tan^2(\theta)} = \tan(\theta)

  4. Substitute into the integral: x21dx=tan(θ)sec(θ)tan(θ)dθ\int \sqrt{x^2 - 1} \, dx = \int \tan(\theta) \cdot \sec(\theta) \tan(\theta) \, d\theta Simplifying: =sec(θ)tan2(θ)dθ= \int \sec(\theta) \tan^2(\theta) \, d\theta

  5. Use a trigonometric identity: To simplify, use the identity tan2(θ)=sec2(θ)1\tan^2(\theta) = \sec^2(\theta) - 1: sec(θ)(sec2(θ)1)dθ\int \sec(\theta) (\sec^2(\theta) - 1) \, d\theta =(sec3(θ)sec(θ))dθ= \int (\sec^3(\theta) - \sec(\theta)) \, d\theta

  6. Integrate: The two terms can be integrated separately. The integral of sec3(θ)\sec^3(\theta) can be solved using a standard reduction formula, and the integral of sec(θ)\sec(\theta) is a well-known result: sec(θ)dθ=lnsec(θ)+tan(θ)+C\int \sec(\theta) \, d\theta = \ln|\sec(\theta) + \tan(\theta)| + C The integral of sec3(θ)\sec^3(\theta) is: sec3(θ)dθ=12sec(θ)tan(θ)+12lnsec(θ)+tan(θ)+C\int \sec^3(\theta) \, d\theta = \frac{1}{2} \sec(\theta) \tan(\theta) + \frac{1}{2} \ln|\sec(\theta) + \tan(\theta)| + C

  7. Substitute back: Finally, substitute θ\theta back in terms of xx using x=sec(θ)x = \sec(\theta) and tan(θ)=x21\tan(\theta) = \sqrt{x^2 - 1}.

Thus, the integral of x21dx\sqrt{x^2 - 1} \, dx becomes: x21dx=x2x2112lnx+x21+C\int \sqrt{x^2 - 1} \, dx = \frac{x}{2} \sqrt{x^2 - 1} - \frac{1}{2} \ln|x + \sqrt{x^2 - 1}| + C

Final Answer:

x2x2112lnx+x21+C\boxed{\frac{x}{2} \sqrt{x^2 - 1} - \frac{1}{2} \ln|x + \sqrt{x^2 - 1}| + C}

Would you like a detailed explanation of any step or the use of any specific formula?

Here are some related questions you might find interesting:

  1. How do trigonometric substitution methods work for integrals?
  2. What is the reduction formula for sec3(θ)dθ\int \sec^3(\theta) \, d\theta?
  3. What other common integrals can be solved with trigonometric substitution?
  4. How do you solve integrals involving a2x2\sqrt{a^2 - x^2} using substitution?
  5. What is the role of absolute values in logarithmic integrals?

Tip: Always check the range of the variables when working with trigonometric substitution to ensure the correct sign for the logarithmic term.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Trigonometric Substitution
Calculus

Formulas

x = sec(θ)
dx = sec(θ)tan(θ) dθ
tan^2(θ) = sec^2(θ) - 1
∫sec(θ) dθ = ln|sec(θ) + tan(θ)| + C
∫sec^3(θ) dθ = (1/2)sec(θ)tan(θ) + (1/2)ln|sec(θ) + tan(θ)| + C

Theorems

Trigonometric Substitution
Reduction Formula for ∫sec^3(θ) dθ

Suitable Grade Level

College Level (Calculus)