Math Problem Statement

What is the integral of sin4x all over 16-cos^2 4x and dx?

Solution

We are asked to evaluate the integral of sin(4x)16cos2(4x)dx\frac{\sin(4x)}{16 - \cos^2(4x)} \, dx. Let's proceed step by step.

Step 1: Recognizing a useful substitution

First, observe that the expression in the denominator has a quadratic form involving cos(4x)\cos(4x). To simplify it, a good strategy is to try the substitution: u=cos(4x)u = \cos(4x) Taking the derivative of uu with respect to xx: du=4sin(4x)dxsin(4x)dx=14dudu = -4\sin(4x) \, dx \quad \Rightarrow \quad \sin(4x) \, dx = -\frac{1}{4} \, du

Step 2: Substituting into the integral

Now substitute u=cos(4x)u = \cos(4x) and sin(4x)dx=14du\sin(4x) \, dx = -\frac{1}{4} \, du into the integral: sin(4x)16cos2(4x)dx=14du16u2\int \frac{\sin(4x)}{16 - \cos^2(4x)} \, dx = -\frac{1}{4} \int \frac{du}{16 - u^2}

Step 3: Recognizing a standard form

The integral du16u2\int \frac{du}{16 - u^2} is of the form: 1a2u2du=12alna+uau+C\int \frac{1}{a^2 - u^2} \, du = \frac{1}{2a} \ln\left| \frac{a + u}{a - u} \right| + C with a=4a = 4. Applying this formula:

du16u2=18ln4+u4u+C\int \frac{du}{16 - u^2} = \frac{1}{8} \ln\left| \frac{4 + u}{4 - u} \right| + C

Step 4: Substituting back for u=cos(4x)u = \cos(4x)

Now, substitute u=cos(4x)u = \cos(4x) back into the result: 1418ln4+cos(4x)4cos(4x)+C=132ln4+cos(4x)4cos(4x)+C-\frac{1}{4} \cdot \frac{1}{8} \ln\left| \frac{4 + \cos(4x)}{4 - \cos(4x)} \right| + C = -\frac{1}{32} \ln\left| \frac{4 + \cos(4x)}{4 - \cos(4x)} \right| + C

Final Answer:

Thus, the integral is: sin(4x)16cos2(4x)dx=132ln4+cos(4x)4cos(4x)+C\int \frac{\sin(4x)}{16 - \cos^2(4x)} \, dx = -\frac{1}{32} \ln\left| \frac{4 + \cos(4x)}{4 - \cos(4x)} \right| + C

Would you like further details or clarifications?

Here are 5 related questions you can explore:

  1. How do you integrate functions involving sin(x)\sin(x) and cos(x)\cos(x)?
  2. What is the integral of 1a2x2\frac{1}{a^2 - x^2}?
  3. Can you apply trigonometric identities to simplify integrals?
  4. How does substitution help simplify integrals?
  5. How can partial fractions be used in integration?

Tip: Always look for a substitution that simplifies the integrand, especially when dealing with trigonometric functions!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Trigonometric Substitution
Definite and Indefinite Integrals

Formulas

Integral of 1/(a^2 - u^2) is (1/2a) ln| (a + u) / (a - u) | + C
Trigonometric substitution: u = cos(4x), du = -4sin(4x) dx

Theorems

Logarithmic Integration Formula
Trigonometric Substitution in Integration

Suitable Grade Level

College Level