Math Problem Statement

(t) = ! t −∞ g(ξ)dξ , g(t) = " cos πt T per |t| ≤ T /2 0 altrove., calcola y(t)

Solution

To calculate y(t)y(t) based on the given integral and functions, let's break down the problem step by step. We are given two functions:

  1. y(t)=tg(ξ)dξy(t) = \int_{-\infty}^{t} g(\xi) \, d\xi
  2. ( g(t) = \begin{cases} \cos\left( \frac{\pi t}{T_{\text{per}}} \right) & \text{if } |t| \leq \frac{T}{2}, \ 0 & \text{elsewhere}. \end{cases} )

Steps to calculate y(t)y(t):

  1. Understand the function g(t)g(t):

    • g(t)=cos(πtTper)g(t) = \cos\left( \frac{\pi t}{T_{\text{per}}} \right) only when tT2|t| \leq \frac{T}{2}, i.e., the function is a cosine wave restricted to the interval T2tT2-\frac{T}{2} \leq t \leq \frac{T}{2}.
    • For tt outside this range, g(t)=0g(t) = 0.
  2. Integrating g(ξ)g(\xi): The integral y(t)=tg(ξ)dξy(t) = \int_{-\infty}^{t} g(\xi) \, d\xi can be split into cases depending on the value of tt.

  3. Case 1: t<T2t < -\frac{T}{2}:

    • In this range, g(ξ)=0g(\xi) = 0 for all ξ\xi, since the cosine function is zero outside tT2|t| \leq \frac{T}{2}.
    • Therefore, y(t)=0y(t) = 0 for t<T2t < -\frac{T}{2}.
  4. Case 2: T2tT2-\frac{T}{2} \leq t \leq \frac{T}{2}:

    • In this range, we need to integrate the function g(ξ)=cos(πξTper)g(\xi) = \cos\left( \frac{\pi \xi}{T_{\text{per}}} \right) from T2-\frac{T}{2} to tt.

    • The integral is: y(t)=T2tcos(πξTper)dξy(t) = \int_{-\frac{T}{2}}^{t} \cos\left( \frac{\pi \xi}{T_{\text{per}}} \right) d\xi

      The antiderivative of cos(πξTper)\cos\left( \frac{\pi \xi}{T_{\text{per}}} \right) is: cos(πξTper)dξ=Tperπsin(πξTper)\int \cos\left( \frac{\pi \xi}{T_{\text{per}}} \right) d\xi = \frac{T_{\text{per}}}{\pi} \sin\left( \frac{\pi \xi}{T_{\text{per}}} \right)

      Applying the limits of integration, we get: y(t)=Tperπ[sin(πtTper)sin(π2)]y(t) = \frac{T_{\text{per}}}{\pi} \left[ \sin\left( \frac{\pi t}{T_{\text{per}}} \right) - \sin\left( -\frac{\pi}{2} \right) \right]

      Since sin(π2)=1\sin\left( -\frac{\pi}{2} \right) = -1, we have: y(t)=Tperπ[sin(πtTper)+1]y(t) = \frac{T_{\text{per}}}{\pi} \left[ \sin\left( \frac{\pi t}{T_{\text{per}}} \right) + 1 \right]

  5. Case 3: t>T2t > \frac{T}{2}:

    • For t>T2t > \frac{T}{2}, the function g(ξ)g(\xi) is zero outside the interval tT2|t| \leq \frac{T}{2}. Therefore, the integral is the same as the value at t=T2t = \frac{T}{2}.

    • So, y(t)=y(T2)y(t) = y\left( \frac{T}{2} \right).

      This is just the result from Case 2 evaluated at t=T2t = \frac{T}{2}: y(T2)=Tperπ(1+1)=2Tperπy\left( \frac{T}{2} \right) = \frac{T_{\text{per}}}{\pi} (1 + 1) = \frac{2 T_{\text{per}}}{\pi}

Final result for y(t)y(t):

  • For t<T2t < -\frac{T}{2}: y(t)=0y(t) = 0
  • For T2tT2-\frac{T}{2} \leq t \leq \frac{T}{2}: y(t)=Tperπ[sin(πtTper)+1]y(t) = \frac{T_{\text{per}}}{\pi} \left[ \sin\left( \frac{\pi t}{T_{\text{per}}} \right) + 1 \right]
  • For t>T2t > \frac{T}{2}: y(t)=2Tperπy(t) = \frac{2 T_{\text{per}}}{\pi}

Would you like me to provide more details or clarify any part of the solution?

Related Questions:

  1. How would the solution change if the periodic function was sine instead of cosine?
  2. What happens to y(t)y(t) if the period TperT_{\text{per}} becomes very large?
  3. Can you explain how to compute the integral for different types of periodic functions?
  4. What is the physical interpretation of integrating a periodic signal over time?
  5. How does the result change if the interval of nonzero g(t)g(t) is shifted?

Tip: When integrating trigonometric functions, always remember to adjust the antiderivative to account for the coefficient inside the argument of the sine or cosine function.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Trigonometric Functions
Piecewise Functions

Formulas

y(t) = ∫_{-∞}^{t} g(ξ) dξ
g(t) = cos(πt / T_{per}) for |t| ≤ T/2, 0 elsewhere
y(t) = (T_{per} / π) [sin(πt / T_{per}) + 1] for -T/2 ≤ t ≤ T/2
y(t) = 2T_{per} / π for t > T/2

Theorems

Fundamental Theorem of Calculus
Properties of Trigonometric Integrals

Suitable Grade Level

Undergraduate Calculus