Math Problem Statement

integrate step by step with explanation

Evaluate the integral \( \int_{0}^{\frac{\pi}{2}} \cos^5(x) \, dx \) with a step-by-step solution.

Solution

To solve the integral:

0π2cos5(x)dx\int_{0}^{\frac{\pi}{2}} \cos^5(x) \, dx

we'll go through a step-by-step solution and explanation.

Step 1: Rewrite the Integrand

The integrand, cos5(x)\cos^5(x), is an odd power of cosine, which we can rewrite as: cos5(x)=cos4(x)cos(x)=(cos2(x))2cos(x)\cos^5(x) = \cos^4(x) \cdot \cos(x) = (\cos^2(x))^2 \cdot \cos(x)

Using the Pythagorean identity cos2(x)=1sin2(x)\cos^2(x) = 1 - \sin^2(x), we get: cos4(x)=(1sin2(x))2\cos^4(x) = (1 - \sin^2(x))^2

Thus, cos5(x)=(1sin2(x))2cos(x)\cos^5(x) = (1 - \sin^2(x))^2 \cos(x)

Step 2: Substitute u=sin(x)u = \sin(x)

Let u=sin(x)u = \sin(x). Then, du=cos(x)dxdu = \cos(x) \, dx.

When x=0x = 0, u=sin(0)=0u = \sin(0) = 0. When x=π2x = \frac{\pi}{2}, u=sin(π2)=1u = \sin\left(\frac{\pi}{2}\right) = 1.

Therefore, the integral becomes: 0π2cos5(x)dx=01(1u2)2du\int_{0}^{\frac{\pi}{2}} \cos^5(x) \, dx = \int_{0}^{1} (1 - u^2)^2 \, du

Step 3: Expand (1u2)2(1 - u^2)^2

Expanding (1u2)2(1 - u^2)^2, we get: (1u2)2=12u2+u4(1 - u^2)^2 = 1 - 2u^2 + u^4

So the integral now becomes: 01(12u2+u4)du\int_{0}^{1} (1 - 2u^2 + u^4) \, du

Step 4: Integrate Term by Term

Now we integrate each term with respect to uu: 01(12u2+u4)du=011du201u2du+01u4du\int_{0}^{1} (1 - 2u^2 + u^4) \, du = \int_{0}^{1} 1 \, du - 2 \int_{0}^{1} u^2 \, du + \int_{0}^{1} u^4 \, du

  1. First integral: 011du=u01=1\int_{0}^{1} 1 \, du = u \Big|_{0}^{1} = 1.

  2. Second integral: 201u2du=2u3301=213=23-2 \int_{0}^{1} u^2 \, du = -2 \cdot \frac{u^3}{3} \Big|_{0}^{1} = -2 \cdot \frac{1}{3} = -\frac{2}{3}.

  3. Third integral: 01u4du=u5501=15\int_{0}^{1} u^4 \, du = \frac{u^5}{5} \Big|_{0}^{1} = \frac{1}{5}.

Step 5: Combine the Results

Now, we add the results from each part: 01(12u2+u4)du=123+15\int_{0}^{1} (1 - 2u^2 + u^4) \, du = 1 - \frac{2}{3} + \frac{1}{5}

To simplify, we find a common denominator of 15: 1=1515,23=1015,15=3151 = \frac{15}{15}, \quad -\frac{2}{3} = -\frac{10}{15}, \quad \frac{1}{5} = \frac{3}{15}

So, 123+15=1510+315=8151 - \frac{2}{3} + \frac{1}{5} = \frac{15 - 10 + 3}{15} = \frac{8}{15}

Final Answer

0π2cos5(x)dx=815\int_{0}^{\frac{\pi}{2}} \cos^5(x) \, dx = \frac{8}{15}

Would you like further details on any part of this solution?


Questions to Explore Further:

  1. How would the solution change if we had cos6(x)\cos^6(x) instead?
  2. Why do we use trigonometric identities in integration?
  3. What is the importance of substitution in integrals like this?
  4. Can we solve this integral using numerical methods?
  5. How do definite integrals differ in their setup compared to indefinite integrals?

Tip:

For integrals involving odd powers of trigonometric functions, breaking down the powers and

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Trigonometric Functions
Substitution Method

Formulas

Pythagorean identity: \( \cos^2(x) = 1 - \sin^2(x) \)
Substitution: Let \( u = \sin(x) \), then \( du = \cos(x) \, dx \)

Theorems

Definite Integration
Pythagorean Identity in Trigonometry

Suitable Grade Level

College Calculus