Math Problem Statement

Solve the integral \( \int_0^{\frac{\pi}{4}} \frac{dx}{3 + \cos(2x)} \)

Solution

The image contains steps for solving an integral:

0π4dx3+cos(2x)\int_0^{\frac{\pi}{4}} \frac{dx}{3 + \cos(2x)}

Here is a breakdown of the solution steps:

  1. Initial Integral Setup: The integral is transformed using a trigonometric identity for cos(2x)\cos(2x): cos(2x)=12sin2(x)\cos(2x) = 1 - 2\sin^2(x) The equation becomes: 0π4dx3+cos(2x)=0π4dx3+(12sin2(x))\int_0^{\frac{\pi}{4}} \frac{dx}{3 + \cos(2x)} = \int_0^{\frac{\pi}{4}} \frac{dx}{3 + (1 - 2\sin^2(x))} Simplifying: 0π4dx42sin2(x)\int_0^{\frac{\pi}{4}} \frac{dx}{4 - 2\sin^2(x)}

  2. Simplification: By rewriting the denominator using trigonometric identities: 42sin2(x)=2(2sin2(x))=2cos2(x)4 - 2\sin^2(x) = 2(2 - \sin^2(x)) = 2\cos^2(x) The integral becomes: 120π4dxcos2(x)(2+tan2(x))\frac{1}{2} \int_0^{\frac{\pi}{4}} \frac{dx}{\cos^2(x) \left(2 + \tan^2(x)\right)}

  3. Substitution: Using the substitution t=tan(x)t = \tan(x), where dt=sec2(x)dxdt = \sec^2(x) dx, the integral transforms into: 1201dt2+t2\frac{1}{2} \int_0^1 \frac{dt}{2 + t^2}

  4. Standard Integral: The integral dta+t2\int \frac{dt}{a + t^2} is a standard form, which results in: 1aarctan(ta)\frac{1}{a} \arctan\left(\frac{t}{\sqrt{a}}\right) Applying this to the current integral: 12×12arctan(t2)01\frac{1}{2} \times \frac{1}{\sqrt{2}} \arctan\left(\frac{t}{\sqrt{2}}\right) \Bigg|_0^1

  5. Final Result: Substituting the limits of integration t=1t = 1 and t=0t = 0: 122(arctan(12)arctan(0))\frac{1}{2\sqrt{2}} \left( \arctan\left(\frac{1}{\sqrt{2}}\right) - \arctan(0) \right) The final answer involves evaluating this expression.


Would you like more details on any step, or assistance with specific parts of the calculation? Here are some relative questions to consider:

  1. How is the trigonometric identity for cos(2x)\cos(2x) applied in integrals?
  2. What is the significance of the substitution t=tan(x)t = \tan(x)?
  3. How do you evaluate standard integrals involving 1a+t2\frac{1}{a + t^2}?
  4. What are the steps to compute arctan\arctan in definite integrals?
  5. What strategies simplify integrals involving trigonometric functions?

Tip: Substitutions, particularly trigonometric ones, are a powerful tool to simplify integrals involving complex expressions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric Identities
Substitution in Integrals
Definite Integrals
Standard Integrals

Formulas

\( \cos(2x) = 1 - 2\sin^2(x) \)
Integral of the form \( \int \frac{dx}{a + t^2} = \frac{1}{\sqrt{a}} \arctan \left( \frac{t}{\sqrt{a}} \right) \)

Theorems

Trigonometric Identity Theorem
Arctangent Integration Theorem

Suitable Grade Level

Grades 11-12 (Pre-Calculus and Calculus)