Math Problem Statement

find the integeral of (5x^2)/(sqrt(1-x^2) using trig subsitution

Solution

To solve the integral 5x21x2dx\int \frac{5x^2}{\sqrt{1 - x^2}} \, dx using trigonometric substitution, we follow these steps:

Step 1: Trigonometric Substitution

We will use the substitution:

x=sinθso thatdx=cosθdθx = \sin \theta \quad \text{so that} \quad dx = \cos \theta \, d\theta Also, note that: 1x2=1sin2θ=cosθ\sqrt{1 - x^2} = \sqrt{1 - \sin^2 \theta} = \cos \theta

Step 2: Rewrite the Integral

Substitute x=sinθx = \sin \theta and dx=cosθdθdx = \cos \theta \, d\theta into the integral:

5x21x2dx=5sin2θcosθcosθdθ\int \frac{5x^2}{\sqrt{1 - x^2}} \, dx = \int \frac{5 \sin^2 \theta}{\cos \theta} \cdot \cos \theta \, d\theta

Since cosθ\cos \theta cancels out, the integral simplifies to:

5sin2θdθ\int 5 \sin^2 \theta \, d\theta

Step 3: Simplify Using a Trigonometric Identity

We use the identity for sin2θ\sin^2 \theta:

sin2θ=1cos(2θ)2\sin^2 \theta = \frac{1 - \cos(2\theta)}{2}

Substitute this into the integral:

5sin2θdθ=51cos(2θ)2dθ\int 5 \sin^2 \theta \, d\theta = \int 5 \cdot \frac{1 - \cos(2\theta)}{2} \, d\theta

Simplify:

5sin2θdθ=52(1cos(2θ))dθ\int 5 \sin^2 \theta \, d\theta = \frac{5}{2} \int (1 - \cos(2\theta)) \, d\theta

Step 4: Integrate

Now, integrate each term:

52(1dθcos(2θ)dθ)\frac{5}{2} \left( \int 1 \, d\theta - \int \cos(2\theta) \, d\theta \right)

The integrals are:

1dθ=θ\int 1 \, d\theta = \theta cos(2θ)dθ=sin(2θ)2\int \cos(2\theta) \, d\theta = \frac{\sin(2\theta)}{2}

So the result is:

52(θsin(2θ)2)=52θ54sin(2θ)\frac{5}{2} \left( \theta - \frac{\sin(2\theta)}{2} \right) = \frac{5}{2} \theta - \frac{5}{4} \sin(2\theta)

Step 5: Back-Substitute

Recall the original substitution x=sinθx = \sin \theta, so θ=arcsin(x)\theta = \arcsin(x). Also, sin(2θ)=2sinθcosθ=2x1x2\sin(2\theta) = 2\sin\theta \cos\theta = 2x \sqrt{1 - x^2}.

Thus, the integral becomes:

52arcsin(x)542x1x2\frac{5}{2} \arcsin(x) - \frac{5}{4} \cdot 2x \sqrt{1 - x^2}

Simplifying:

52arcsin(x)5x1x22\frac{5}{2} \arcsin(x) - \frac{5x \sqrt{1 - x^2}}{2}

Final Answer:

The integral is:

5x21x2dx=52arcsin(x)5x1x22+C\int \frac{5x^2}{\sqrt{1 - x^2}} \, dx = \frac{5}{2} \arcsin(x) - \frac{5x \sqrt{1 - x^2}}{2} + C

Do you have any questions or would you like further details?

Here are 5 related questions:

  1. How do you apply other substitutions in integration?
  2. Can you integrate functions involving cos2(x)\cos^2(x) using trigonometric identities?
  3. How do you solve integrals involving exponential functions using substitution?
  4. What are the benefits of using trigonometric substitution in integration?
  5. Can you explain how to solve an integral involving tan(x)\tan(x) using substitution?

Tip: Always check for trigonometric identities or algebraic simplifications before integrating directly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Trigonometric Substitution
Trigonometric Identities

Formulas

x = sin(θ)
sin^2(θ) = (1 - cos(2θ)) / 2
Integral of cos(2θ)

Theorems

Trigonometric Substitution Theorem
Fundamental Theorem of Calculus

Suitable Grade Level

Undergraduate Calculus