Math Problem Statement

a digital signal processing question asks: given H(z) = 2+3z^-1/(1+(1/2)z^-1)(1+(1/4)z^-1), determine the impulse response h[n]

Solution

To determine the impulse response h[n]h[n] from the given transfer function H(z)H(z), we need to find the inverse Z-transform of H(z)H(z). Here's how we approach it:

Step 1: Rewrite H(z)H(z)

The given H(z)H(z) is:

H(z)=2+3z1(1+12z1)(1+14z1).H(z) = \frac{2 + 3z^{-1}}{\left(1 + \frac{1}{2}z^{-1}\right)\left(1 + \frac{1}{4}z^{-1}\right)}.

Rewriting the denominator in a simpler form:

H(z)=2+3z1(1+0.5z1)(1+0.25z1).H(z) = \frac{2 + 3z^{-1}}{(1 + 0.5z^{-1})(1 + 0.25z^{-1})}.

Step 2: Expand H(z)H(z) into Partial Fractions

We express H(z)H(z) as:

H(z)=A1+0.5z1+B1+0.25z1,H(z) = \frac{A}{1 + 0.5z^{-1}} + \frac{B}{1 + 0.25z^{-1}},

where AA and BB are constants to be determined.

Combine Terms

H(z)=A(1+0.25z1)+B(1+0.5z1)(1+0.5z1)(1+0.25z1).H(z) = \frac{A(1 + 0.25z^{-1}) + B(1 + 0.5z^{-1})}{(1 + 0.5z^{-1})(1 + 0.25z^{-1})}.

Equating the numerator:

2+3z1=A(1+0.25z1)+B(1+0.5z1).2 + 3z^{-1} = A(1 + 0.25z^{-1}) + B(1 + 0.5z^{-1}).

Expand and collect terms:

2+3z1=A+0.25Az1+B+0.5Bz1.2 + 3z^{-1} = A + 0.25Az^{-1} + B + 0.5Bz^{-1}.

Separate constant and z1z^{-1} terms:

2=A+B,3=0.25A+0.5B.2 = A + B, \quad 3 = 0.25A + 0.5B.

Solve for AA and BB

From 2=A+B2 = A + B, we have B=2AB = 2 - A.

Substitute B=2AB = 2 - A into the second equation:

3=0.25A+0.5(2A).3 = 0.25A + 0.5(2 - A).

Simplify:

3=0.25A+10.5A,3 = 0.25A + 1 - 0.5A, 3=10.25A,3 = 1 - 0.25A, 0.25A=2,0.25A = -2, A=8.A = -8.

Using B=2AB = 2 - A:

B=2(8)=10.B = 2 - (-8) = 10.

Step 3: Write H(z)H(z) with Partial Fractions

Now we rewrite H(z)H(z) as:

H(z)=81+0.5z1+101+0.25z1.H(z) = \frac{-8}{1 + 0.5z^{-1}} + \frac{10}{1 + 0.25z^{-1}}.

Step 4: Find the Inverse Z-Transform

The general form of the inverse Z-transform for 11+az1\frac{1}{1 + az^{-1}} is:

[ \mathcal{Z}^{-1}\left[\frac{1}{1 + az^{-1}}\right] = (-a)^n u[n], ]

where u[n]u[n] is the unit step function.

Inverse Transform Each Term

For the first term:

[ \mathcal{Z}^{-1}\left[\frac{-8}{1 + 0.5z^{-1}}\right] = -8(-0.5)^n u[n]. ]

For the second term:

[ \mathcal{Z}^{-1}\left[\frac{10}{1 + 0.25z^{-1}}\right] = 10(-0.25)^n u[n]. ]

Step 5: Combine Results

The impulse response h[n]h[n] is:

[ h[n] = -8(-0.5)^n u[n] + 10(-0.25)^n u[n}. ]

Or:

h[n]=(8)(0.5)n+10(0.25)n,n0.h[n] = (-8)(-0.5)^n + 10(-0.25)^n, \quad n \geq 0.

Final Answer:

h[n]=8(0.5)n+10(0.25)n,n0.h[n] = 8(0.5)^n + 10(-0.25)^n, \quad n \geq 0.


Do you have questions or want further details? Here are some related questions:

  1. How is partial fraction decomposition applied in DSP?
  2. What are the properties of the Z-transform that make this calculation possible?
  3. How do you interpret the stability of H(z)H(z) based on h[n]h[n]?
  4. Can you derive the same h[n]h[n] using other methods?
  5. What happens if you use H(z)H(z) for a different input (e.g., a step input)?

Tip: For verifying impulse responses, you can use numerical tools or directly substitute into the Z-transform formula!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Digital Signal Processing
Z-Transform
Partial Fraction Decomposition
Impulse Response

Formulas

H(z) = (Numerator)/(Denominator)
Partial Fraction Decomposition: H(z) = A / (1 + a1*z^-1) + B / (1 + a2*z^-1)
Inverse Z-Transform: Z^-1[1 / (1 + az^-1)] = (-a)^n * u[n]

Theorems

Inverse Z-Transform
Linearity Property of Z-Transform

Suitable Grade Level

Undergraduate (Engineering, DSP Course)