Math Problem Statement

  1. The rate of effusion of an unknown gas is 13.45 mL/min. Under identifical conditions, the rate of effusion of pure oxygen (O²) gas is 8.96 mL/min. Identify the unknown gas using graham's law

Solution

To solve this using Graham's Law of Effusion, we use the following relationship:

Rate of effusion of gas ARate of effusion of gas B=Molar mass of gas BMolar mass of gas A\frac{\text{Rate of effusion of gas A}}{\text{Rate of effusion of gas B}} = \sqrt{\frac{\text{Molar mass of gas B}}{\text{Molar mass of gas A}}}

Where:

  • Gas A is the unknown gas.
  • Gas B is oxygen (O2O_2).
  • The molar mass of O2O_2 is 32.00g/mol32.00 \, \text{g/mol}.
  • The rates of effusion are given: Rate of effusion of gas A=13.45mL/min,Rate of effusion of gas B=8.96mL/min.\text{Rate of effusion of gas A} = 13.45 \, \text{mL/min}, \quad \text{Rate of effusion of gas B} = 8.96 \, \text{mL/min}.

Step 1: Rearrange Graham's Law to solve for the molar mass of the unknown gas:

Rate of effusion of ARate of effusion of B=Molar mass of O2Molar mass of unknown gas\frac{\text{Rate of effusion of A}}{\text{Rate of effusion of B}} = \sqrt{\frac{\text{Molar mass of } O_2}{\text{Molar mass of unknown gas}}} Square both sides: (Rate of effusion of ARate of effusion of B)2=Molar mass of O2Molar mass of unknown gas\left(\frac{\text{Rate of effusion of A}}{\text{Rate of effusion of B}}\right)^2 = \frac{\text{Molar mass of } O_2}{\text{Molar mass of unknown gas}} Rearranging to isolate the molar mass of the unknown gas: Molar mass of unknown gas=Molar mass of O2(Rate of effusion of ARate of effusion of B)2\text{Molar mass of unknown gas} = \frac{\text{Molar mass of } O_2}{\left(\frac{\text{Rate of effusion of A}}{\text{Rate of effusion of B}}\right)^2}

Step 2: Calculate the ratio of the rates:

Rate of effusion of ARate of effusion of B=13.458.961.502\frac{\text{Rate of effusion of A}}{\text{Rate of effusion of B}} = \frac{13.45}{8.96} \approx 1.502

Step 3: Square the ratio:

(Rate of effusion of ARate of effusion of B)2=1.50222.256\left(\frac{\text{Rate of effusion of A}}{\text{Rate of effusion of B}}\right)^2 = 1.502^2 \approx 2.256

Step 4: Solve for the molar mass of the unknown gas:

Molar mass of unknown gas=32.002.25614.18g/mol\text{Molar mass of unknown gas} = \frac{32.00}{2.256} \approx 14.18 \, \text{g/mol}

Step 5: Identify the unknown gas:

A gas with a molar mass of approximately 14.18g/mol14.18 \, \text{g/mol} is most likely nitrogen (N2N_2), which has a molar mass of 14.01g/mol14.01 \, \text{g/mol}.

Final Answer:

The unknown gas is nitrogen (N2N_2).


Would you like me to explain any specific step in more detail? 😊


5 Related Questions:

  1. What assumptions are made in Graham's law about the gases involved?
  2. How would the answer change if the conditions were not identical for both gases?
  3. Can Graham's law be applied to gas mixtures? Why or why not?
  4. How does the molar mass of a gas affect its rate of diffusion or effusion?
  5. What is the kinetic theory explanation for Graham's law?

Tip:

Always ensure that the temperatures and pressures of the gases are identical before applying Graham's law, as deviations can introduce errors in your calculation.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Ratio and Proportion
Square Root Calculations
Gas Laws

Formulas

Rate of effusion ratio = sqrt(Molar mass of gas B / Molar mass of gas A)
Molar mass of unknown gas = Molar mass of known gas / (Rate ratio)^2

Theorems

Graham's Law of Effusion

Suitable Grade Level

Grades 10-12