Math Problem Statement

Which of the following pairs of functions are inverses of each other?

Solution

To determine which pair of functions are inverses of each other, we need to check if the composition of the two functions f(g(x))f(g(x)) and g(f(x))g(f(x)) equals xx.

Let's evaluate each pair of functions:

Pair A:

f(x)=7x+10f(x) = \frac{7}{x} + 10 and g(x)=7x10g(x) = \frac{7}{x - 10}

  • f(g(x))=f(7x10)=77x10+10=x10+10=xf(g(x)) = f\left(\frac{7}{x - 10}\right) = \frac{7}{\frac{7}{x - 10}} + 10 = x - 10 + 10 = x
  • g(f(x))=g(7x+10)=7(7x+10)10=77x=xg(f(x)) = g\left(\frac{7}{x} + 10\right) = \frac{7}{\left(\frac{7}{x} + 10\right) - 10} = \frac{7}{\frac{7}{x}} = x

So, f(g(x))=g(f(x))=xf(g(x)) = g(f(x)) = x.

Pair B:

f(x)=7x9f(x) = \frac{7}{x - 9} and g(x)=7x+9g(x) = \frac{7}{x} + 9

  • f(g(x))=f(7x+9)=7(7x+9)9=77x=xf(g(x)) = f\left(\frac{7}{x} + 9\right) = \frac{7}{\left(\frac{7}{x} + 9\right) - 9} = \frac{7}{\frac{7}{x}} = x
  • g(f(x))=g(7x9)=7(7x9)+9=x9+9=xg(f(x)) = g\left(\frac{7}{x - 9}\right) = \frac{7}{\left(\frac{7}{x - 9}\right)} + 9 = x - 9 + 9 = x

So, f(g(x))=g(f(x))=xf(g(x)) = g(f(x)) = x.

Pair C:

f(x)=2x+8f(x) = 2x + 8 and g(x)=x82g(x) = \frac{x - 8}{2}

  • f(g(x))=f(x82)=2(x82)+8=x8+8=xf(g(x)) = f\left(\frac{x - 8}{2}\right) = 2\left(\frac{x - 8}{2}\right) + 8 = x - 8 + 8 = x
  • g(f(x))=g(2x+8)=2x+882=xg(f(x)) = g\left(2x + 8\right) = \frac{2x + 8 - 8}{2} = x

So, f(g(x))=g(f(x))=xf(g(x)) = g(f(x)) = x.

Pair D:

f(x)=5x+11f(x) = 5x + 11 and g(x)=x115g(x) = \frac{x - 11}{5}

  • f(g(x))=f(x115)=5(x115)+11=x11+11=xf(g(x)) = f\left(\frac{x - 11}{5}\right) = 5\left(\frac{x - 11}{5}\right) + 11 = x - 11 + 11 = x
  • g(f(x))=g(5x+11)=5x+11115=xg(f(x)) = g\left(5x + 11\right) = \frac{5x + 11 - 11}{5} = x

So, f(g(x))=g(f(x))=xf(g(x)) = g(f(x)) = x.

Conclusion:

All the function pairs (A, B, C, and D) are inverse pairs since f(g(x))=g(f(x))=xf(g(x)) = g(f(x)) = x for each one.

Do you need any further details or have any questions about this? Here are some related questions:

  1. How do you find the inverse of a function?
  2. What is the relationship between the graph of a function and its inverse?
  3. Can every function have an inverse? Why or why not?
  4. How do domain and range change when taking the inverse of a function?
  5. How can you verify algebraically that two functions are inverses?

Tip: To find the inverse of a function f(x)f(x), swap xx and yy, then solve for yy in terms of xx.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Functions
Inverses of Functions
Composition of Functions

Formulas

f(g(x)) = g(f(x)) = x
To find the inverse of a function, swap x and y, then solve for y.

Theorems

Inverse Function Theorem

Suitable Grade Level

Grades 10-12