Math Problem Statement

Составьте уравнение гиперболы в канонической системе координат, если известно, что фокусы гиперболы лежат симметрично относительно начала координат на оси Ox, а также точки M1(4, -4√3) и M2(3, 2√5) лежат на гиперболе.

Solution

To solve this problem and determine the equation of the hyperbola in its canonical form, let's analyze the information step by step:


Step 1: General equation of a hyperbola

If the foci of the hyperbola lie symmetrically on the xx-axis (horizontal hyperbola), the canonical equation of the hyperbola is:

x2a2y2b2=1\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1

  • The distance from the center to each focus is cc, where c2=a2+b2c^2 = a^2 + b^2.

Step 2: Given data

  1. The foci lie symmetrically with respect to the origin on the xx-axis, meaning the hyperbola's center is at the origin, and it opens along the xx-axis.

  2. Two points M1(4,43)M_1(4, -4\sqrt{3}) and M2(3,25)M_2(3, 2\sqrt{5}) lie on the hyperbola. This means these points satisfy the equation:

x2a2y2b2=1\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1

We will use these points to determine a2a^2 and b2b^2.


Step 3: Substitution of points into the equation

  1. Start with point M1(4,43)M_1(4, -4\sqrt{3}): 42a2(43)2b2=1\frac{4^2}{a^2} - \frac{(-4\sqrt{3})^2}{b^2} = 1 Simplifying: 16a248b2=1(Equation 1)\frac{16}{a^2} - \frac{48}{b^2} = 1 \quad \text{(Equation 1)}

  2. Next, substitute point M2(3,25)M_2(3, 2\sqrt{5}): 32a2(25)2b2=1\frac{3^2}{a^2} - \frac{(2\sqrt{5})^2}{b^2} = 1 Simplifying: 9a220b2=1(Equation 2)\frac{9}{a^2} - \frac{20}{b^2} = 1 \quad \text{(Equation 2)}


Step 4: Solving the system of equations

We now solve the system of two equations:

  1. 16a248b2=1\frac{16}{a^2} - \frac{48}{b^2} = 1
  2. 9a220b2=1\frac{9}{a^2} - \frac{20}{b^2} = 1

Introduce substitutions:
Let A=1a2A = \frac{1}{a^2} and B=1b2B = \frac{1}{b^2}. The equations become:

  1. 16A48B=116A - 48B = 1
  2. 9A20B=19A - 20B = 1

Solve for AA and BB using elimination or substitution.

  • Multiply the second equation by 16 to align coefficients with the first equation:

    16(9A20B)=16144A320B=1616(9A - 20B) = 16 \quad \Rightarrow \quad 144A - 320B = 16

  • Subtract the first equation (16A48B=1)(16A - 48B = 1) multiplied by 9:

    9(16A48B)=9144A432B=99(16A - 48B) = 9 \quad \Rightarrow \quad 144A - 432B = 9

Now subtract:

(144A320B)(144A432B)=169(144A - 320B) - (144A - 432B) = 16 - 9 112B=7B=7112=116112B = 7 \quad \Rightarrow \quad B = \frac{7}{112} = \frac{1}{16}

Thus:

1b2=116b2=16\frac{1}{b^2} = \frac{1}{16} \quad \Rightarrow \quad b^2 = 16

Substitute B=116B = \frac{1}{16} into 16A48B=116A - 48B = 1:

16A48(116)=116A - 48\left(\frac{1}{16}\right) = 1 16A3=116A=4A=416=1416A - 3 = 1 \quad \Rightarrow \quad 16A = 4 \quad \Rightarrow \quad A = \frac{4}{16} = \frac{1}{4}

Thus:

1a2=14a2=4\frac{1}{a^2} = \frac{1}{4} \quad \Rightarrow \quad a^2 = 4


Step 5: Final equation of the hyperbola

Now that we know a2=4a^2 = 4 and b2=16b^2 = 16, the equation of the hyperbola is:

x24y216=1\frac{x^2}{4} - \frac{y^2}{16} = 1


Final Answer:

The equation of the hyperbola is:

x24y216=1\frac{x^2}{4} - \frac{y^2}{16} = 1


Do you need further clarification or help with similar problems? Here are five related questions:

  1. How do you derive the equation of a vertical hyperbola?
  2. How are the foci and vertices of a hyperbola determined from its equation?
  3. Solve for the equation of a hyperbola given its asymptotes and one point.
  4. What is the general form of the equation of a hyperbola centered at (h,k)(h, k)?
  5. How do you calculate the eccentricity of a hyperbola?

Tip: Remember, for hyperbolas, c2=a2+b2c^2 = a^2 + b^2, where cc is the distance to the foci.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Analytic Geometry
Hyperbola
System of Equations

Formulas

Standard form of hyperbola equation: x^2 / a^2 - y^2 / b^2 = 1
Relationship between foci and axes: c^2 = a^2 + b^2

Theorems

Canonical form of hyperbola
Symmetry properties of conic sections

Suitable Grade Level

Undergraduate level or advanced high school (Grades 11-12)