Math Problem Statement

\left(-5+2i\right)+\left(3-7i\right)

Solution

To solve (5+2i)+(37i)\left(-5 + 2i\right) + \left(3 - 7i\right), follow these steps:

  1. Add the real parts:
    5+3=2-5 + 3 = -2

  2. Add the imaginary parts:
    2i+(7i)=5i2i + (-7i) = -5i

So, the result is: (5+2i)+(37i)=25i\left(-5 + 2i\right) + \left(3 - 7i\right) = -2 - 5i

Would you like further details or have any questions?

Here are 5 related questions to practice:

  1. (4+6i)+(2+3i)\left(4 + 6i\right) + \left(-2 + 3i\right)
  2. (1i)+(3+2i)\left(1 - i\right) + \left(3 + 2i\right)
  3. (7+5i)(23i)\left(-7 + 5i\right) - \left(2 - 3i\right)
  4. (68i)+(4+9i)\left(6 - 8i\right) + \left(-4 + 9i\right)
  5. (2+i)+(16i)\left(2 + i\right) + \left(-1 - 6i\right)

Tip: When adding or subtracting complex numbers, always handle the real and imaginary parts separately.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Complex Numbers

Formulas

Addition of complex numbers: (a + bi) + (c + di) = (a + c) + (b + d)i

Theorems

Basic properties of complex numbers

Suitable Grade Level

Grades 10-12