Math Problem Statement
時間t、時間的 周波数f、時間的 角周波数ω=2πf、時間的ラプラス変数s=σ+jω、 位置x、空間的 周波数k、空間的 角周波数Ω=2πk、空間的ラプラス変数u=ξ+jΩ、 普通の乗算演算子を × 、畳み込み演算子を * 、 と します。 時間領域で、 応答b(x,t) = グリーン関数G(x,t) * デルタ関数δ(x,t) 周波数領域で、 応答b(u,s) = グリーン関数G(u,s) × 1 ですか?
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Fourier Transform
Laplace Transform
Green's Function
Convolution
Delta Function
Formulas
b(x,t) = G(x,t) * δ(x,t)
b(u,s) = G(u,s) × 1
ω = 2πf
Ω = 2πk
s = σ + jω
u = ξ + jΩ
Theorems
Convolution Theorem
Suitable Grade Level
Advanced Undergraduate or Graduate Level
Related Recommendation
Laplace Transform and Impulse Response: Understanding the Difference with Green's Function
Understanding Impulse Response and Green's Function in Laplace Transforms
Simplifying Laplace Transforms Involving Delta and Heaviside Functions
Solve by Convolution Theorem - Integral Calculus Problem
Laplace Transform of Function Products: Exponential and Trigonometric Functions