Math Problem Statement

Buatlah grafik dari fungsi-fungsi berikut, tentukan domain dan range, dan selidiki fungsi komposisi serta invers dari beberapa fungsi yang diberikan.

Solution

Let's go through the mathematical problems shown in the image one by one.

  1. Buatlah grafik dari masing-masing fungsi berikut:

    • f(x)=x2+1f(x) = -x^2 + 1
    • f(x)=x22x+2f(x) = -x^2 - 2x + 2
  2. Tentukan domain dan range dari fungsi f(x)=x21f(x) = -x^2 - 1 dan gambarkan grafik fungsinya.

  3. Diketahui f(x)=x+1f(x) = |x| + 1 dan g(x)=xxg(x) = \sqrt{x - \sqrt{x}}:

    • a. Tentukan Df,Rf,Dg,D_f, R_f, D_g, dan RgR_g.
    • b. Selidiki apakah (fg)(x)(f \circ g)(x) dan (gf)(x)(g \circ f)(x) ada?
    • c. Tentukan Dfg,Rfg,Dgf,D_{f \circ g}, R_{f \circ g}, D_{g \circ f}, dan RgfR_{g \circ f}.
  4. Diketahui f(x)=1+xf(x) = \sqrt{1 + x} dan g(x)=x21g(x) = -x^2 - 1:

    • a. Tentukan DfgD_{f \circ g} dan RfgR_{f \circ g}.
    • b. Tentukan DgfD_{g \circ f} dan RgfR_{g \circ f}.

Let's solve them step by step:

Problem 1:

a. f(x)=x2+1f(x) = -x^2 + 1

  • This is a parabola opening downwards with its vertex at (0,1)(0, 1).

b. f(x)=x22x+2f(x) = -x^2 - 2x + 2

  • This is a parabola opening downwards. First, complete the square to find its vertex: f(x)=x22x+2=(x2+2x2)=(x+1)2+3f(x) = -x^2 - 2x + 2 = -(x^2 + 2x - 2) = -(x+1)^2 + 3
  • The vertex is at (1,3)(-1, 3).

Problem 2:

f(x)=x21f(x) = -x^2 - 1

  • This is a parabola opening downwards with its vertex at (0,1)(0, -1).
  • Domain: All real numbers, R\mathbb{R}.
  • Range: All y1y \leq -1.

Problem 3:

Given f(x)=x+1f(x) = |x| + 1 and g(x)=xxg(x) = \sqrt{x - \sqrt{x}}:

  • f(x)=x+1f(x) = |x| + 1:
    • Domain: All real numbers, R\mathbb{R}.
    • Range: y1y \geq 1.
  • g(x)=xxg(x) = \sqrt{x - \sqrt{x}}:
    • Domain: x0x \geq 0 because of the square root.
    • For xx0x - \sqrt{x} \geq 0, let u=xu = \sqrt{x}. Then u2u0u^2 - u \geq 0 implies u(u1)0u(u - 1) \geq 0. So u0u \leq 0 or u1u \geq 1.
    • Therefore, x=u2x = u^2 means x1x \geq 1.
    • Range: y0y \geq 0.
  • Investigate compositions (fg)(x)(f \circ g)(x) and (gf)(x)(g \circ f)(x):
    • (fg)(x)=f(g(x))=f(xx)(f \circ g)(x) = f(g(x)) = f(\sqrt{x - \sqrt{x}}).
    • (gf)(x)=g(f(x))=g(x+1)(g \circ f)(x) = g(f(x)) = g(|x| + 1).

Problem 4:

Given f(x)=1+xf(x) = \sqrt{1 + x} and g(x)=x21g(x) = -x^2 - 1:

  • f(x)=1+xf(x) = \sqrt{1 + x}:
    • Domain: x1x \geq -1.
    • Range: y0y \geq 0.
  • g(x)=x21g(x) = -x^2 - 1:
    • Domain: All real numbers, R\mathbb{R}.
    • Range: All y1y \leq -1.

If you want any detailed graphs, let me know. Do you have any questions or need more details about any specific part of the solution?

Here are 5 related questions you might find interesting:

  1. How do you find the vertex of a quadratic function?
  2. What is the process of completing the square?
  3. How do you determine the domain and range of a composition of functions?
  4. How can you graph absolute value functions?
  5. What are the steps to analyze and graph a piecewise function?

Tip: When finding the domain of a composition of functions, always consider the domain restrictions of both the inner and outer functions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Graphing Quadratic Functions
Finding Domain and Range
Function Composition
Absolute Value Function
Square Root Function

Formulas

Quadratic Function: f(x) = ax^2 + bx + c
Absolute Value Function: f(x) = |x| + c
Square Root Function: f(x) = √(x - a)

Theorems

Composition of Functions Theorem
Domain and Range Theorem

Suitable Grade Level

High School (Grades 10-12)