Math Problem Statement

Begin by graphing

f left parenthesis x right parenthesis equals log Subscript 4 Baseline xf(x)=log4x.

Then use transformations of this graph to graph the given function. What is the vertical​ asymptote? Use the graphs to determine the given​ function's domain and range.

g left parenthesis x right parenthesis equals log Subscript 4 Baseline left parenthesis x plus 6 right parenthesisg(x)=log4(x+6)

Solution

Let’s work through the problem step by step:


Step 1: Base graph f(x)=log4(x)f(x) = \log_4(x):

The base graph f(x)=log4(x)f(x) = \log_4(x) has the following properties:

  • Vertical asymptote: x=0x = 0, because log4(x)\log_4(x) is undefined for x0x \leq 0.
  • Domain: (0,)(0, \infty).
  • Range: (,)(-\infty, \infty).

Step 2: Transformations to graph g(x)=log4(x+6)g(x) = \log_4(x + 6):

The function g(x)=log4(x+6)g(x) = \log_4(x + 6) introduces a horizontal shift of 66 units to the left (since x+6=0x + 6 = 0 when x=6x = -6).

Properties of g(x)g(x):

  • Vertical asymptote: The vertical asymptote shifts from x=0x = 0 to x=6x = -6.
  • Domain: x+6>0x + 6 > 0, so x>6x > -6. The domain is (6,)(-6, \infty).
  • Range: Logarithmic functions always have a range of (,)(-\infty, \infty), which remains unchanged.

Graphical Transformation:

The graph of g(x)g(x) is obtained by shifting the graph of f(x)=log4(x)f(x) = \log_4(x) 6 units to the left.


Step 3: Vertical Asymptote and Range:

  • Vertical Asymptote: x=6x = -6.
  • Domain: (6,)(-6, \infty).
  • Range: (,)(-\infty, \infty).

Visualization:

I will now generate and share a graph of f(x)=log4(x)f(x) = \log_4(x) and g(x)=log4(x+6)g(x) = \log_4(x + 6). Define the transformed function g(x) = log_4(x + 6) def log_base_4_transformed(x): return np.log(x + 6) / np.log(4)

Compute the transformed function

g_x = log_base_4_transformed(x)

Plot the graphs

plt.figure(figsize=(10, 6)) plt.plot(x, f_x, label=r"$f(x) = \log_4(x)$", color='blue', linewidth=2) plt.plot(x, g_x, label=r"$g(x) = \log_4(x + 6)$", color='green', linestyle='--', linewidth=2)

Highlight the vertical asymptotes

plt.axvline(0, color='black', linestyle=':', linewidth=1, label="As

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithmic Functions
Graph Transformations
Domain and Range Analysis
Vertical Asymptotes

Formulas

f(x) = log_b(x)
g(x) = log_b(x + c)

Theorems

Logarithmic Transformation Rules

Suitable Grade Level

Grades 10-12