Math Problem Statement

Y=tan2x, graph

Solution

import numpy as np import matplotlib.pyplot as plt

Define the function y = tan(2x)

x = np.linspace(-np.pi, np.pi, 1000) y = np.tan(2 * x)

Avoid plotting values near the vertical asymptotes of the tangent function

y[np.abs(y) > 10] = np.nan

Create the plot

plt.figure(figsize=(8, 6)) plt.plot(x, y, label=r"$y = \tan(2x)$") plt.axhline(0, color='black', linewidth=0.5, linestyle='--') plt.axvline(0, color='black', linewidth=0.5, linestyle='--') plt.title("Graph of $y = \tan(2x)$") plt.xlabel("$x$") plt.ylabel("$y$") plt.ylim(-10, 10) plt.grid(True, linestyle='--', alpha=0.7) plt.legend() plt.show() <<ImageDisplayed>>successHere is the graph of y=tan(2x)y = \tan(2x). The graph demonstrates the periodic behavior of the tangent function with the argument 2x2x, doubling its frequency compared to y=tan(x)y = \tan(x). It also shows vertical asymptotes at x=±π4,±3π4,x = \pm \frac{\pi}{4}, \pm \frac{3\pi}{4}, \dots, where the function is undefined.

Would you like more details or have any specific questions about this graph?

Related Questions:

  1. What is the period of the function y=tan(2x)y = \tan(2x)?
  2. How does the graph of y=tan(2x)y = \tan(2x) compare to y=tan(x)y = \tan(x)?
  3. What are the vertical asymptotes of y=tan(2x)y = \tan(2x)?
  4. How can transformations like y=tan(2x)+cy = \tan(2x) + c affect the graph?
  5. How would the graph change if y=tan(kx)y = \tan(kx) for a general kk?

Tip:

Remember that the period of tan(kx)\tan(kx) is πk\frac{\pi}{k}, and its vertical asymptotes occur where kx=π2+nπkx = \frac{\pi}{2} + n\pi.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Graphing Functions
Periodic Functions

Formulas

y = tan(2x)
Period of tangent function: π/k

Theorems

Properties of the tangent function
Behavior of vertical asymptotes in trigonometric functions

Suitable Grade Level

Grades 10-12