Math Problem Statement
Buatlah grafik dari y=−2x+3 dan y=−2(x−4)^2 pada satu bidang kartesius, kemudian tentukan titik potong antar kedua fungsi tersebut.
Solution
import numpy as np import matplotlib.pyplot as plt
Define the functions
def linear_func(x): return -2 * x + 3
def quadratic_func(x): return -2 * (x - 4)**2
Generate x values
x_values = np.linspace(-2, 8, 400)
Calculate y values for both functions
y_linear = linear_func(x_values) y_quadratic = quadratic_func(x_values)
Plot the functions
plt.figure(figsize=(8, 6)) plt.plot(x_values, y_linear, label=r'$y=-2x+3$', color='blue') plt.plot(x_values, y_quadratic, label=r'$y=-2(x-4)^2$', color='red')
Find intersection points
from sympy import symbols
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Algebra
Linear Equations
Quadratic Equations
Graphing Functions
Intersection Points
Formulas
Linear function formula: y = mx + b
Quadratic function formula: y = a(x - h)^2 + k
Theorems
Concept of Intersection of Two Graphs
Quadratic Formula
Suitable Grade Level
Grades 9-11
Related Recommendation
Graphing and Finding the Intersection of y = x^2 - 5x - 3 and y = x - 2
Graphically Solving Simultaneous Equations: Quadratic and Linear Equations
Solving System of Linear Equations Graphically: y = 4x - 2 and y = -x + 3
Graph Linear Equations y = 2x + 4 and y = -2x + 8 to Find the Intersection
System of Equations: Line y = -2x + 4 and Quadratic Function