Math Problem Statement
f(x)=2cos(2x-π/2)-1 graph 2 periods of function label the tick
Solution
import numpy as np import matplotlib.pyplot as plt
Define the function
def f(x): return 2 * np.cos(2 * x - np.pi / 2) - 1
Generate x values for two periods
x = np.linspace(0, 2 * np.pi, 1000) y = f(x)
Determine the period of the function
period = 2 * np.pi / 2 # Period = 2π / coefficient of x in cos
Extend x to cover two periods
x_two_periods = np.linspace(0, 2 * period, 1000) y_two_periods = f(x_two_periods)
Plot the function
plt.figure(figsize=(10, 6)) plt.plot(x_two_periods, y_two_periods, label=r"$f(x) = 2\cos(2x-\frac{\pi}{2})-1$")
Add labels for clarity
ticks = np.arange(0, 2 * period + period / 4, period / 4) tick_labels = [f"{round(tick, 2)}" for tick in ticks] plt.xticks(ticks, tick_labels) plt.axhline(0, color='black', linewidth=0.5, linestyle='--') plt.axvline(0, color='black', linewidth=0.5, linestyle='--')
plt.title("Graph of $f(x) = 2\cos(2x - \frac{\pi}{2}) - 1$") plt.xlabel("$x$") plt.ylabel("$f(x)$") plt.grid(True, linestyle='--', alpha=0.7) plt.legend() plt.show() <<ImageDisplayed>>successHere is the graph of over two periods. The x-axis ticks are labeled at quarter-period intervals for clarity. Let me know if you need further adjustments or explanations!
Do you have questions or need additional details? Here are some related topics:
- How is the period of a trigonometric function determined?
- What is the phase shift in this function, and how does it affect the graph?
- How does the amplitude of a trigonometric function influence its graph?
- How to interpret transformations like vertical shifts in trigonometric functions?
- Can this function be rewritten in terms of sine or another trigonometric identity?
Tip: When graphing trigonometric functions, always note key parameters like amplitude, period, and phase shift—they guide the shape and position of the graph.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Trigonometry
Graphing Functions
Periodicity
Function Transformations
Formulas
f(x) = A * cos(Bx - C) + D
Period = 2π / B
Theorems
Trigonometric Periodicity
Suitable Grade Level
Grades 10-12