Math Problem Statement
graph the dilated image of quadrilateral mnop using the scale factor of 1/3 and the origin as the center of dilation
Solution
To graph the dilated image of quadrilateral with a scale factor of and the origin as the center of dilation, follow these steps:
Step-by-step process:
-
Identify the coordinates of quadrilateral :
- Suppose the vertices of quadrilateral are , , , and .
-
Apply the scale factor:
- The scale factor of means that each coordinate of the quadrilateral will be reduced to one-third of its original value.
- The formula to calculate the new coordinates after dilation is:
- For each point , apply this formula to get the new coordinates of the dilated image.
-
Example (Assume sample coordinates):
- Let’s assume the original coordinates of are:
- Now apply the scale factor :
-
Plot the original and dilated points:
- First, plot the original quadrilateral on a coordinate plane.
- Then, plot the new dilated points , , , and .
-
Draw the dilated quadrilateral:
- Connect the dilated points to form the dilated image of the quadrilateral.
This gives you a smaller version of quadrilateral , with the size reduced by a factor of 3.
Would you like a visual example, or do you have specific coordinates you'd like to use?
Follow-up Questions:
- What are the original coordinates of quadrilateral in your problem?
- Would you like help plotting the points on a coordinate plane?
- How does the dilation affect the area of the quadrilateral?
- What is the difference between dilation and other transformations like reflection or translation?
- What happens if the scale factor is greater than 1?
Tip:
When using the origin as the center of dilation, the transformation affects both the size and position of the figure proportionally.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Geometry
Dilation
Coordinate Geometry
Transformations
Formulas
Dilation formula: (x', y') = (scale_factor * x, scale_factor * y)
Theorems
Center of Dilation Property
Suitable Grade Level
Grades 8-10