Math Problem Statement
Solution
The image contains several mathematical problems related to absolute value functions and a question regarding fishing depth based on a given formula.
Here’s a breakdown of the problems from the image:
1. Identifying the Absolute Value Function Graph
The first problem asks to identify the graph of the absolute value function:
To solve this:
- The general form of an absolute value function is , where is the vertex of the graph.
- For , the vertex is at , and the graph opens upwards.
The correct graph should show a V-shape with the vertex at .
2. Matching the Equation to a Graph
In the second part of the image, you are asked to find the equation of the absolute value function corresponding to the given graph (E).
You can determine the equation by identifying:
- The vertex of the graph.
- The slope of the lines on each side of the vertex.
3. Fishing Depth Question
The third question gives a function for maximum depth:
You are asked to determine the range of depths based on the conditions provided. This involves solving for when the value of lies between two given bounds.
Do you want detailed step-by-step solutions for each question? Here are 5 related questions that can expand on these topics:
- How do you find the vertex of an absolute value function?
- How does the transformation of an absolute value function affect its graph?
- What is the general approach to match an equation to a graph of a piecewise function?
- How can you solve absolute value equations algebraically?
- What is the method to solve real-life problems using absolute value functions?
Tip: Absolute value graphs are always V-shaped, and their vertex can easily be identified by setting the expression inside the absolute value equal to zero.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Absolute Value Functions
Algebra
Linear Equations
Piecewise Functions
Formulas
y = |x + h| + k for absolute value functions
f(x) = 6|s - 237| - 432 for real-world application
Theorems
Properties of absolute value functions
Linear transformations (translation and dilation)
Suitable Grade Level
Grades 9-11
Related Recommendation
Graph Transformation of f(x) = |x| with Reflection and Vertical Shift
Solving Absolute Value Equations and Temperature Optimization Problems for Fish Tanks
Identifying the Parent Function and Transformation of Absolute Value Graph
Graphing and Transforming Absolute Value Functions | Vertical and Horizontal Shifts
Graphing and Identifying Absolute Value Functions with Transformations