Math Problem Statement

Betrachten Sie das Vektorfeld F: R^2 \ {0} -> R^2 definiert durch F(x, y) := (y / (x^2 + y^2), -x / (x^2 + y^2)). Prüfen Sie, ob die Einschränkungen F|_{U_1} und F|_{U_2} Gradientfelder für U_1 := {(x, y) ∈ R^2 : x > 0} und U_2 := {(x, y) ∈ R^2 : y > 0} sind. Falls ja, bestimmen Sie ein Potential Φ_j für F|_{U_j} mit j = 1, 2.

Solution

The problem asks us to analyze the vector field F:R2{0}R2F: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^2 defined by F(x,y):=(yx2+y2,xx2+y2).F(x, y) := \left( \frac{y}{x^2 + y^2}, \frac{-x}{x^2 + y^2} \right). Specifically, part (d) involves checking whether the restrictions FU1F|_{U_1} and FU2F|_{U_2} are gradient fields for the sets U1:={(x,y)R2:x>0}U_1 := \{ (x, y) \in \mathbb{R}^2 : x > 0 \} and U2:={(x,y)R2:y>0}U_2 := \{ (x, y) \in \mathbb{R}^2 : y > 0 \}. If they are gradient fields, we should determine the potential function Φj\Phi_j for FUjF|_{U_j} with j=1,2j = 1, 2.

Solution Outline

  1. Check if FF is a gradient field: For FF to be a gradient field in each region U1U_1 and U2U_2, it must satisfy the condition F1y=F2x\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x} where F=(F1,F2)F = (F_1, F_2).

  2. Potential Function: If FF is a gradient field in each region, we would find a scalar potential function Φ\Phi such that F=ΦF = \nabla \Phi.

Step-by-Step Solution

  1. Compute the Partial Derivatives:

    • For F(x,y)=(yx2+y2,xx2+y2)F(x, y) = \left( \frac{y}{x^2 + y^2}, \frac{-x}{x^2 + y^2} \right):
      • F1(x,y)=yx2+y2F_1(x, y) = \frac{y}{x^2 + y^2}
      • F2(x,y)=xx2+y2F_2(x, y) = \frac{-x}{x^2 + y^2}
    • Calculate F1y\frac{\partial F_1}{\partial y} and F2x\frac{\partial F_2}{\partial x} to determine if they are equal.
  2. Determine Potential Function: If FU1F|_{U_1} and FU2F|_{U_2} are gradient fields, find potential functions Φ1\Phi_1 and Φ2\Phi_2 for these regions.

Would you like the full calculations and steps for each part?

Further Exploration

  1. What properties make a vector field conservative or a gradient field?
  2. How can you determine if a vector field is path-independent?
  3. Why are the regions U1U_1 and U2U_2 necessary to consider separately?
  4. How does excluding the origin (0,0)(0,0) impact the vector field?
  5. Can the concept of potential functions apply to fields in more than two dimensions?

Tip: Always check if a vector field is conservative by verifying if it satisfies the equality of mixed partial derivatives (e.g., F1y=F2x\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x}).

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector fields
Gradient fields
Partial derivatives
Potential functions

Formulas

F(x, y) = (y / (x^2 + y^2), -x / (x^2 + y^2))
Condition for gradient field: ∂F1/∂y = ∂F2/∂x

Theorems

Gradient field conditions
Potential function existence for conservative fields

Suitable Grade Level

Undergraduate Mathematics