Math Problem Statement

Find the global max and global min of x*sqrt (1 - x^2), along the interval [-2,1]

Solution

To find the global maximum and global minimum of the function f(x)=x1x2f(x) = x \sqrt{1 - x^2} on the interval [2,1][-2, 1], follow these steps:

Step 1: Check the domain of the function

The square root term 1x2\sqrt{1 - x^2} is defined only when 1x201 - x^2 \geq 0, which means: 1x1-1 \leq x \leq 1 So, f(x)f(x) is undefined for x[2,1)x \in [-2, -1). Therefore, we restrict our evaluation to x[1,1]x \in [-1, 1].

Step 2: Derivative to find critical points

The derivative of f(x)f(x) is: f(x)=1x2+x2x21x2f'(x) = \sqrt{1 - x^2} + x \cdot \frac{-2x}{2\sqrt{1 - x^2}} Simplify: f(x)=1x2x21x2f'(x) = \sqrt{1 - x^2} - \frac{x^2}{\sqrt{1 - x^2}} Combine under a common denominator: f(x)=(1x2)x21x2=12x21x2f'(x) = \frac{(1 - x^2) - x^2}{\sqrt{1 - x^2}} = \frac{1 - 2x^2}{\sqrt{1 - x^2}}

Set f(x)=0f'(x) = 0: 12x2=0    x2=12    x=±221 - 2x^2 = 0 \implies x^2 = \frac{1}{2} \implies x = \pm \frac{\sqrt{2}}{2}

Step 3: Evaluate f(x)f(x) at critical points and endpoints

The critical points are x=±22x = \pm \frac{\sqrt{2}}{2}. The endpoints of the interval are x=1x = -1 and x=1x = 1.

  1. f(1)=(1)1(1)2=(1)0=0f\left(-1\right) = (-1) \sqrt{1 - (-1)^2} = (-1) \cdot 0 = 0
  2. f(1)=(1)1(1)2=(1)0=0f\left(1\right) = (1) \sqrt{1 - (1)^2} = (1) \cdot 0 = 0
  3. f(22)=221(22)2=2212=2222=12f\left(\frac{\sqrt{2}}{2}\right) = \frac{\sqrt{2}}{2} \sqrt{1 - \left(\frac{\sqrt{2}}{2}\right)^2} = \frac{\sqrt{2}}{2} \sqrt{\frac{1}{2}} = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{1}{2}
  4. f(22)=221(22)2=2222=12f\left(-\frac{\sqrt{2}}{2}\right) = -\frac{\sqrt{2}}{2} \sqrt{1 - \left(-\frac{\sqrt{2}}{2}\right)^2} = -\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} = -\frac{1}{2}

Step 4: Determine the global extrema

The values of f(x)f(x) are:

  • At x=1x = -1: f(x)=0f(x) = 0
  • At x=1x = 1: f(x)=0f(x) = 0
  • At x=22x = \frac{\sqrt{2}}{2}: f(x)=12f(x) = \frac{1}{2}
  • At x=22x = -\frac{\sqrt{2}}{2}: f(x)=12f(x) = -\frac{1}{2}

Thus:

  • Global maximum: f(x)=12f(x) = \frac{1}{2} at x=22x = \frac{\sqrt{2}}{2}
  • Global minimum: f(x)=12f(x) = -\frac{1}{2} at x=22x = -\frac{\sqrt{2}}{2}

Final Answer:

  • Global max: 12\frac{1}{2} at x=22x = \frac{\sqrt{2}}{2}
  • Global min: 12-\frac{1}{2} at x=22x = -\frac{\sqrt{2}}{2}

Would you like a plot of the function or further details?

Related Questions:

  1. How to find the derivative of a function involving square roots?
  2. What are the steps to determine critical points of a function?
  3. Why does the function have a restricted domain?
  4. Can this method apply to a similar trigonometric function?
  5. How can global extrema be verified visually?

Tip: Always verify the domain of the function when dealing with square roots or logarithms.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Critical Points
Global Extrema
Square Roots
Domain Restrictions

Formulas

f(x) = x * sqrt(1 - x^2)
Derivative: f'(x) = (1 - 2x^2) / sqrt(1 - x^2)

Theorems

Critical Point Analysis
Global Maximum and Minimum Theorem

Suitable Grade Level

Grades 11-12, College Calculus