Math Problem Statement

Find all the unknown angle measures inside each triangle from the geometry quiz provided.

Solution

I can help analyze and solve the problems in the image. Let me extract the necessary details.


Problem Breakdown:

  1. Top Left Triangle (PQR\triangle PQR):

    • Given: Angle Q=51Q = 51^\circ, two equal sides (PQ=QRPQ = QR).
    • This is an isosceles triangle, so the base angles (P\angle P and R\angle R) are equal.
  2. Top Right Triangle (STU\triangle STU):

    • Given: T=68\angle T = 68^\circ, ST=TUST = TU (isosceles triangle).
    • Find the unknown angles S\angle S and U\angle U.
  3. Bottom Triangle (RST\triangle RST):

    • Given: R=(9x+4)\angle R = (9x + 4)^\circ, S=(3x2)\angle S = (3x - 2)^\circ, and T\angle T (vertex opposite equal sides).
    • Use the triangle angle sum property (angles=180\sum \text{angles} = 180^\circ) to find xx and all angles.

Solving Each Triangle:

1. PQR\triangle PQR:

Sum of angles in a triangle=180.\text{Sum of angles in a triangle} = 180^\circ. Let P=R=x\angle P = \angle R = x. x+x+51=180    2x=129    x=64.5.x + x + 51 = 180 \implies 2x = 129 \implies x = 64.5.

  • P=R=64.5\angle P = \angle R = 64.5^\circ.

2. STU\triangle STU:

LetS=U=x(isosceles triangle).\text{Let} \, \angle S = \angle U = x \, \text{(isosceles triangle)}. x+x+68=180    2x=112    x=56.x + x + 68 = 180 \implies 2x = 112 \implies x = 56.

  • S=U=56\angle S = \angle U = 56^\circ.

3. RST\triangle RST:

Using the triangle angle sum property: (9x+4)+(3x2)+T=180.(9x + 4) + (3x - 2) + \angle T = 180. Simplify: 12x+2+T=180    T=18012x2    T=17812x.12x + 2 + \angle T = 180 \implies \angle T = 180 - 12x - 2 \implies \angle T = 178 - 12x.

  • Now substitute the equality of the two sides (RT=STRT = ST) into the equations: This implies the base angles (R\angle R and T\angle T) are equal.

Set (9x+4)=(17812x)(9x + 4) = (178 - 12x): 9x+4=17812x    21x=174    x=8.29(rounded to 2 decimal places).9x + 4 = 178 - 12x \implies 21x = 174 \implies x = 8.29 \, (\text{rounded to 2 decimal places}).

Substitute x=8.29x = 8.29 back to find angles: R=9(8.29)+4=78.61,\angle R = 9(8.29) + 4 = 78.61^\circ, S=3(8.29)2=23.87,\angle S = 3(8.29) - 2 = 23.87^\circ, T=17812(8.29)=78.61.\angle T = 178 - 12(8.29) = 78.61^\circ.


Final Answers:

  1. PQR\triangle PQR:

    • P=R=64.5\angle P = \angle R = 64.5^\circ, Q=51\angle Q = 51^\circ.
  2. STU\triangle STU:

    • S=U=56\angle S = \angle U = 56^\circ, T=68\angle T = 68^\circ.
  3. RST\triangle RST:

    • x=8.29x = 8.29,
    • R=78.61\angle R = 78.61^\circ,
    • S=23.87\angle S = 23.87^\circ,
    • T=78.61\angle T = 78.61^\circ.

Would you like detailed steps for any part?
Here are 5 related questions to expand on this topic:

  1. How do you identify an isosceles triangle and its properties?
  2. Can we verify the solutions by checking the sum of angles in a triangle?
  3. What happens if a triangle has obtuse angles? How does it affect the base angles?
  4. How do you solve problems involving external angles of a triangle?
  5. Could the method differ if the triangle was scalene instead of isosceles?

Tip: When working with isosceles triangles, always check the given equal sides to set the equal angles correctly!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Triangle Properties
Angle Sum Property
Isosceles Triangle

Formulas

Sum of angles in a triangle = 180°

Theorems

Triangle Angle Sum Theorem
Isosceles Triangle Theorem

Suitable Grade Level

Grades 8-10