Math Problem Statement

Givet är planet i parameterform: (x, y, z) = (4, 1, -2) + t(2, -3, 0) + s(1, 1, 1). Ange planets ekvation i allmän form (Ax + By + Cz + D = 0).

Solution

The given problem provides a plane in parametric form, and the goal is to find its equation in general form. The parametric form of the plane is:

(xyz)=(412)+t(230)+s(111)\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4 \\ 1 \\ -2 \end{pmatrix} + t \begin{pmatrix} 2 \\ -3 \\ 0 \end{pmatrix} + s \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}

Step 1: Finding Two Direction Vectors

The parametric equation describes a plane defined by a point and two direction vectors. We have:

  • Point P0=(4,1,2)P_0 = (4, 1, -2)
  • Direction vector d1=(230)\mathbf{d}_1 = \begin{pmatrix} 2 \\ -3 \\ 0 \end{pmatrix}
  • Direction vector d2=(111)\mathbf{d}_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}

Step 2: Calculating the Normal Vector

The normal vector n\mathbf{n} to the plane is found by taking the cross product of the two direction vectors d1\mathbf{d}_1 and d2\mathbf{d}_2:

d1×d2=ijk230111\mathbf{d}_1 \times \mathbf{d}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -3 & 0 \\ 1 & 1 & 1 \end{vmatrix}

Calculating the determinant:

n=i3011j2011+k2311\mathbf{n} = \mathbf{i} \begin{vmatrix} -3 & 0 \\ 1 & 1 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 2 & 0 \\ 1 & 1 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 2 & -3 \\ 1 & 1 \end{vmatrix}

[ \mathbf{n} = \mathbf{i}(-3 - 0) - \mathbf{j}(2 - 0)

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Plane Equation
Vector Cross Product

Formulas

Parametric form of a plane: (x, y, z) = P0 + t*d1 + s*d2
Cross product: d1 × d2 = (A, B, C)
General form of a plane: Ax + By + Cz + D = 0

Theorems

Cross Product Theorem
Vector Geometry

Suitable Grade Level

Grades 11-12 or Undergraduate Level