Math Problem Statement

Find the G.C.D. of 5678 and 1234. Also find some integers s and t such that G.C.D.(5678, 1234) = 5678s + 1234t

Solution

We will solve this problem in two parts:

  1. Finding the G.C.D. (Greatest Common Divisor) of 5678 and 1234 using the Euclidean algorithm.
  2. Finding integers ss and tt such that G.C.D.(5678,1234)=5678s+1234t\text{G.C.D.}(5678, 1234) = 5678s + 1234t using the Extended Euclidean algorithm.

Step 1: Euclidean Algorithm to find G.C.D.

We perform the Euclidean algorithm by repeatedly applying the division algorithm:
a=bq+ra = bq + r where aa and bb are integers, and qq is the quotient and rr is the remainder.

Let’s apply this to 5678 and 1234.

5678÷1234=4with remainderr=56784×1234=56784936=7425678 \div 1234 = 4 \quad \text{with remainder} \quad r = 5678 - 4 \times 1234 = 5678 - 4936 = 742 Now, apply the algorithm to 1234 and 742:

1234÷742=1with remainderr=12341×742=1234742=4921234 \div 742 = 1 \quad \text{with remainder} \quad r = 1234 - 1 \times 742 = 1234 - 742 = 492 Next, apply the algorithm to 742 and 492:

742÷492=1with remainderr=7421×492=742492=250742 \div 492 = 1 \quad \text{with remainder} \quad r = 742 - 1 \times 492 = 742 - 492 = 250 Next, apply the algorithm to 492 and 250:

492÷250=1with remainderr=4921×250=492250=242492 \div 250 = 1 \quad \text{with remainder} \quad r = 492 - 1 \times 250 = 492 - 250 = 242 Next, apply the algorithm to 250 and 242:

250÷242=1with remainderr=2501×242=250242=8250 \div 242 = 1 \quad \text{with remainder} \quad r = 250 - 1 \times 242 = 250 - 242 = 8 Next, apply the algorithm to 242 and 8:

242÷8=30with remainderr=24230×8=242240=2242 \div 8 = 30 \quad \text{with remainder} \quad r = 242 - 30 \times 8 = 242 - 240 = 2 Finally, apply the algorithm to 8 and 2:

8÷2=4with remainderr=84×2=08 \div 2 = 4 \quad \text{with remainder} \quad r = 8 - 4 \times 2 = 0 Since the remainder is 0, the G.C.D. is 2.

Step 2: Extended Euclidean Algorithm to find ss and tt

Now, we need to find integers ss and tt such that:

G.C.D.(5678,1234)=5678s+1234t=2\text{G.C.D.}(5678, 1234) = 5678s + 1234t = 2

We work backwards from the Euclidean steps:

2=24230×82 = 242 - 30 \times 8 Substitute 8=2501×2428 = 250 - 1 \times 242:

2=24230×(2501×242)=24230×250+30×242=31×24230×2502 = 242 - 30 \times (250 - 1 \times 242) = 242 - 30 \times 250 + 30 \times 242 = 31 \times 242 - 30 \times 250 Substitute 242=4921×250242 = 492 - 1 \times 250:

2=31×(4921×250)30×250=31×49231×25030×250=31×49261×2502 = 31 \times (492 - 1 \times 250) - 30 \times 250 = 31 \times 492 - 31 \times 250 - 30 \times 250 = 31 \times 492 - 61 \times 250 Substitute 250=7421×492250 = 742 - 1 \times 492:

2=31×49261×(7421×492)=31×49261×742+61×492=92×49261×7422 = 31 \times 492 - 61 \times (742 - 1 \times 492) = 31 \times 492 - 61 \times 742 + 61 \times 492 = 92 \times 492 - 61 \times 742 Substitute 492=12341×742492 = 1234 - 1 \times 742:

2=92×(12341×742)61×742=92×123492×74261×742=92×1234153×7422 = 92 \times (1234 - 1 \times 742) - 61 \times 742 = 92 \times 1234 - 92 \times 742 - 61 \times 742 = 92 \times 1234 - 153 \times 742 Substitute 742=56784×1234742 = 5678 - 4 \times 1234:

2=92×1234153×(56784×1234)=92×1234153×5678+612×12342 = 92 \times 1234 - 153 \times (5678 - 4 \times 1234) = 92 \times 1234 - 153 \times 5678 + 612 \times 1234 Simplifying:

2=(92+612)×1234153×5678=704×1234153×56782 = (92 + 612) \times 1234 - 153 \times 5678 = 704 \times 1234 - 153 \times 5678

Thus, the integers ss and tt are:

s=153,t=704s = -153, \quad t = 704

Final Answer:

  • G.C.D.(5678, 1234) = 2
  • Integers s=153s = -153 and t=704t = 704 satisfy 5678s+1234t=25678s + 1234t = 2.

Would you like more details or have any questions?


Relative Questions:

  1. How is the Euclidean algorithm related to finding the G.C.D.?
  2. What is the purpose of the Extended Euclidean Algorithm?
  3. Can the G.C.D. of two numbers be greater than the smaller of the two numbers?
  4. How does the G.C.D. help in solving Diophantine equations?
  5. How would you apply the Euclidean algorithm to three or more numbers?

Tip: The Extended Euclidean Algorithm not only finds the G.C.D. but also provides a way to express it as a linear combination of the original numbers.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Number Theory
Greatest Common Divisor (G.C.D.)
Diophantine Equations

Formulas

G.C.D. using Euclidean Algorithm
Extended Euclidean Algorithm

Theorems

Euclidean Algorithm
Extended Euclidean Algorithm

Suitable Grade Level

Grades 9-12