Math Problem Statement

Let f(x) = 2x + 1 , g(x) = - 5x ^ 2 - 8 and h(x) = (x + 4)/2

  1. Find (f + g)(x)

  2. Find (f - g)(x)

  3. Find (g - h)(x)

  4. Find (g - f)(x)

  5. Find (h - g)(0) .

Solution

Let's solve each of the problems step by step.

Given Functions:

  • f(x)=2x+1f(x) = 2x + 1
  • g(x)=5x28g(x) = -5x^2 - 8
  • h(x)=x+42h(x) = \frac{x + 4}{2}

1. Find (f+g)(x)(f + g)(x)

(f+g)(x)=f(x)+g(x)=(2x+1)+(5x28)(f + g)(x) = f(x) + g(x) = (2x + 1) + (-5x^2 - 8) Simplifying: (f+g)(x)=5x2+2x+(18)=5x2+2x7(f + g)(x) = -5x^2 + 2x + (1 - 8) = -5x^2 + 2x - 7

2. Find (fg)(x)(f - g)(x)

(fg)(x)=f(x)g(x)=(2x+1)(5x28)(f - g)(x) = f(x) - g(x) = (2x + 1) - (-5x^2 - 8) Simplifying: (fg)(x)=2x+1+5x2+8=5x2+2x+9(f - g)(x) = 2x + 1 + 5x^2 + 8 = 5x^2 + 2x + 9

3. Find (gh)(x)(g - h)(x)

(gh)(x)=g(x)h(x)=(5x28)x+42(g - h)(x) = g(x) - h(x) = (-5x^2 - 8) - \frac{x + 4}{2} To subtract h(x)h(x), first rewrite it: h(x)=x+42=12x+2h(x) = \frac{x + 4}{2} = \frac{1}{2}x + 2 Now subtract: (gh)(x)=5x28(12x+2)(g - h)(x) = -5x^2 - 8 - \left(\frac{1}{2}x + 2\right) Simplifying: (gh)(x)=5x212x10(g - h)(x) = -5x^2 - \frac{1}{2}x - 10

4. Find (gf)(x)(g - f)(x)

(gf)(x)=g(x)f(x)=(5x28)(2x+1)(g - f)(x) = g(x) - f(x) = (-5x^2 - 8) - (2x + 1) Simplifying: (gf)(x)=5x22x9(g - f)(x) = -5x^2 - 2x - 9

5. Find (hg)(0)(h - g)(0)

First, evaluate h(0)h(0) and g(0)g(0): h(0)=0+42=2h(0) = \frac{0 + 4}{2} = 2 g(0)=5(0)28=8g(0) = -5(0)^2 - 8 = -8 Now subtract: (hg)(0)=h(0)g(0)=2(8)=2+8=10(h - g)(0) = h(0) - g(0) = 2 - (-8) = 2 + 8 = 10

Final Answers:

  1. (f+g)(x)=5x2+2x7(f + g)(x) = -5x^2 + 2x - 7
  2. (fg)(x)=5x2+2x+9(f - g)(x) = 5x^2 + 2x + 9
  3. (gh)(x)=5x212x10(g - h)(x) = -5x^2 - \frac{1}{2}x - 10
  4. (gf)(x)=5x22x9(g - f)(x) = -5x^2 - 2x - 9
  5. (hg)(0)=10(h - g)(0) = 10

Would you like further details on any of these steps, or do you have any questions?


Here are 5 related questions for practice:

  1. Find (fg)(x)(f \cdot g)(x).
  2. Find (f/g)(x)(f / g)(x), assuming g(x)0g(x) \neq 0.
  3. Evaluate (h+f)(2)(h + f)(-2).
  4. Determine the roots of (g+h)(x)=0(g + h)(x) = 0.
  5. Find the derivative of f(x)f(x), g(x)g(x), and h(x)h(x).

Tip: When combining functions, always simplify step by step to avoid mistakes.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Function Operations

Formulas

(f + g)(x) = f(x) + g(x)
(f - g)(x) = f(x) - g(x)
(g - h)(x) = g(x) - h(x)
(h - g)(x) = h(x) - g(x)

Theorems

-

Suitable Grade Level

Grades 9-11