Math Problem Statement

ratkaise tehtävä

Olkoot f(x) = \frac{x^2}{5} + 5 ja g(x) = \sqrt{5x - 25}, joille M_f = [\sqrt{5}, \infty[ ja M_g = [5, 10]. Määritä yhdistetyt funktiot f\circ g, g\circ f ja f\circ f määritysjoukkoineen.

Solution

We are given the functions f(x)=x25+5f(x) = \frac{x^2}{5} + 5 and g(x)=5x25g(x) = \sqrt{5x - 25}, along with their domains:
Mf=[5,[M_f = [\sqrt{5}, \infty[ and Mg=[5,10]M_g = [5, 10].

We need to determine the composite functions fgf \circ g, gfg \circ f, and fff \circ f, along with their domains.

1. Composite Function fgf \circ g

The composite function (fg)(x)(f \circ g)(x) is defined as: (fg)(x)=f(g(x)).(f \circ g)(x) = f(g(x)). Substitute g(x)=5x25g(x) = \sqrt{5x - 25} into f(x)f(x): f(g(x))=(5x25)25+5=5x255+5=x5+5=x.f(g(x)) = \frac{(\sqrt{5x - 25})^2}{5} + 5 = \frac{5x - 25}{5} + 5 = x - 5 + 5 = x. Thus, f(g(x))=xf(g(x)) = x.

Domain of fgf \circ g:
The domain of fgf \circ g is the set of xx values for which g(x)g(x) is in the domain of f(x)f(x). The domain of g(x)g(x) is [5,10][5, 10]. The range of g(x)g(x), which is [0,)[0, \infty), is contained within the domain of f(x)f(x). Therefore, the domain of fgf \circ g is [5,10][5, 10].

2. Composite Function gfg \circ f

The composite function (gf)(x)(g \circ f)(x) is defined as: (gf)(x)=g(f(x)).(g \circ f)(x) = g(f(x)). Substitute f(x)=x25+5f(x) = \frac{x^2}{5} + 5 into g(x)g(x): g(f(x))=5(x25+5)25=x2+2525=x2.g(f(x)) = \sqrt{5 \left( \frac{x^2}{5} + 5 \right) - 25} = \sqrt{x^2 + 25 - 25} = \sqrt{x^2}. Thus, g(f(x))=xg(f(x)) = |x|.

Domain of gfg \circ f:
The domain of gfg \circ f is the set of xx values for which f(x)f(x) is in the domain of g(x)g(x). The domain of f(x)f(x) is [5,)[\sqrt{5}, \infty). We also need 5f(x)105 \leq f(x) \leq 10. Setting this condition on f(x)f(x): 5x25+510.5 \leq \frac{x^2}{5} + 5 \leq 10. This simplifies to: 0x255or0x225,0 \leq \frac{x^2}{5} \leq 5 \quad \text{or} \quad 0 \leq x^2 \leq 25, which gives 0x50 \leq |x| \leq 5. Therefore, x[0,5]x \in [0, 5].

Thus, the domain of gfg \circ f is [5,5][\sqrt{5}, 5].

3. Composite Function fff \circ f

The composite function (ff)(x)(f \circ f)(x) is defined as: (ff)(x)=f(f(x)).(f \circ f)(x) = f(f(x)). Substitute f(x)=x25+5f(x) = \frac{x^2}{5} + 5 into itself: f(f(x))=(x25+5)25+5.f(f(x)) = \frac{\left( \frac{x^2}{5} + 5 \right)^2}{5} + 5. First, expand the expression: (x25+5)2=x425+2x255+25=x425+2x2+25.\left( \frac{x^2}{5} + 5 \right)^2 = \frac{x^4}{25} + 2 \cdot \frac{x^2}{5} \cdot 5 + 25 = \frac{x^4}{25} + 2x^2 + 25. Now substitute this into f(x)f(x): f(f(x))=x425+2x2+255+5=x4125+2x25+5+5.f(f(x)) = \frac{\frac{x^4}{25} + 2x^2 + 25}{5} + 5 = \frac{x^4}{125} + \frac{2x^2}{5} + 5 + 5. Thus, f(f(x))=x4125+2x25+10.f(f(x)) = \frac{x^4}{125} + \frac{2x^2}{5} + 10.

Domain of fff \circ f:
The domain of fff \circ f is the set of xx values for which f(x)f(x) is in the domain of f(x)f(x), which is [5,)[\sqrt{5}, \infty). Thus, the domain of fff \circ f is also [5,)[\sqrt{5}, \infty).

Final Answer:

  • fg(x)=xf \circ g(x) = x, with domain [5,10][5, 10].
  • gf(x)=xg \circ f(x) = |x|, with domain [5,5][\sqrt{5}, 5].
  • ff(x)=x4125+2x25+10f \circ f(x) = \frac{x^4}{125} + \frac{2x^2}{5} + 10, with domain [5,)[\sqrt{5}, \infty).

Would you like more details on any specific step or have any questions?

Here are 5 related questions to practice:

  1. What happens to the domain when you switch the order of composition of functions?
  2. How would the composition change if we altered f(x)f(x) to f(x)=x2+1f(x) = x^2 + 1?
  3. Can you find the range of fgf \circ g based on the given information?
  4. What are the necessary conditions for two functions to be composable?
  5. How would the composition change if we restrict the range of g(x)g(x)?

Tip: Always check the domain of the inside function in a composite function to ensure that it fits within the domain of the outside function.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Function Composition
Square Roots
Domain and Range

Formulas

f(x) = \frac{x^2}{5} + 5
g(x) = \sqrt{5x - 25}
(f \circ g)(x) = f(g(x))
(g \circ f)(x) = g(f(x))
(f \circ f)(x) = f(f(x))

Theorems

Domain of Composite Functions
Square Root Function

Suitable Grade Level

Grades 11-12