Math Problem Statement

Diketahui f(x) = 2x^2 - 3 dan g(x) = 4 + 7x. Carilah: a) f(g(x)), b) g(f(x)), c) g(g(x)), d) f(f(x)). Diketahui t(x) = 4x - 5 dan g(x) = 7 - 20x. Carilah: a) f(g(x)), b) f(g(-1)), c) g(f(x)), d) g(f(-1)), e) f(f(t)), f) g(g(t)).

Solution

Let me analyze the contents of the image and provide a solution to the questions.

Summary of the problem:

1) Given:

  • f(x)=2x23f(x) = 2x^2 - 3
  • g(x)=4+7xg(x) = 4 + 7x

Find:

  • f(g(x))f(g(x))
  • g(f(x))g(f(x))
  • g(g(x))g(g(x))
  • f(f(x))f(f(x))

2) Given:

  • t(x)=4x5t(x) = 4x - 5
  • g(x)=720xg(x) = 7 - 20x

Find:

  • f(g(x))f(g(x))
  • f(g(1))f(g(-1))
  • g(f(x))g(f(x))
  • g(f(1))g(f(-1))
  • f(f(t))f(f(t))
  • g(g(t))g(g(t))

I'll now compute these step by step. sympy import symbols, Function, simplify

Define the variables and functions for Question 1

x = symbols('x') f = Function('f')(x) g = Function('g')(x) f_expr = 2x**2 - 3 g_expr = 4 + 7x

Composite functions for Question 1

f_g = f_expr.subs(x, g_expr) # f(g(x)) g_f = g_expr.subs(x, f_expr) # g(f(x)) g_g = g_expr.subs(x, g_expr) # g(g(x)) f_f = f_expr.subs(x, f_expr) # f(f(x))

Define the variables and functions for Question 2

t = Function('t')(x) t_expr = 4x - 5 g_expr_2 = 7 - 20x

Composite functions for Question 2

f_g_2 = f_expr.subs(x, g_expr_2) # f(g(x)) f_g_minus_1 = f_g_2.subs(x, -1) # f(g(-1)) g_f_2 = g_expr_2.subs(x, f_expr) # g(f(x)) g_f_minus_1 = g_f_2.subs(x, -1) # g(f(-1)) f_f_t = f_expr.subs(x, t_expr) # f(f(t)) g_g_t = g_expr_2.subs(x, t_expr) # g(g(t))

Simplify all results

results = { "f(g(x))": simplify(f_g), "g(f(x))": simplify(g_f), "g(g(x))": simplify(g_g), "f(f(x))": simplify(f_f), "f(g(-1))": simplify(f_g_minus_1), "g(f(-1))": simplify(g_f_minus_1), "f(f(t))": simplify(f_f_t), "g(g(t))": simplify(g_g_t) }

resultsHere are the solutions to the problems:

Question 1:

  1. f(g(x))=2(7x+4)23f(g(x)) = 2(7x + 4)^2 - 3
  2. g(f(x))=14x217g(f(x)) = 14x^2 - 17
  3. g(g(x))=49x+32g(g(x)) = 49x + 32
  4. f(f(x))=2(2x23)23f(f(x)) = 2(2x^2 - 3)^2 - 3

Question 2:

  1. f(g(x))=2(720x)23f(g(x)) = 2(7 - 20x)^2 - 3
  2. f(g(1))=1455f(g(-1)) = 1455
  3. g(f(x))=10780xg(f(x)) = 107 - 80x
  4. g(f(1))=27g(f(-1)) = 27
  5. f(f(t))=2(4x5)23f(f(t)) = 2(4x - 5)^2 - 3
  6. g(g(t))=10780xg(g(t)) = 107 - 80x

Would you like detailed steps for any of these computations?


Here are 5 follow-up questions to enhance understanding:

  1. What are the general rules for computing composite functions like f(g(x))f(g(x))?
  2. How does substitution work when finding g(g(x))g(g(x)) or f(f(x))f(f(x))?
  3. Why is simplification important in composite functions?
  4. How can you verify the results of composite functions graphically?
  5. How do the results change when substituting specific values, like g(1)g(-1)?

Tip: Always simplify expressions at each step to make the final results clearer and easier to interpret.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Function Composition
Algebraic Substitution

Formulas

f(g(x)) = f(g(x) expression)
g(f(x)) = g(f(x) expression)
f(f(x)) = f(f(x) expression)
g(g(x)) = g(g(x) expression)

Theorems

Function composition rules

Suitable Grade Level

Grades 10-12