Math Problem Statement

For the function f(x) = 4e^x and g(x) = x^7, find the following: (a) f(g(1)), (b) g(f(1)), (c) f(g(x)), (d) g(f(x)), (e) f(t)g(t).

Solution

From the image, we need to solve the given function problems for f(x)=4exf(x) = 4e^x and g(x)=x7g(x) = x^7.

Let's work through each part:

(a) f(g(1))f(g(1)):

  • g(1)=17=1g(1) = 1^7 = 1
  • Now, f(g(1))=f(1)=4e1=4ef(g(1)) = f(1) = 4e^1 = 4e

(b) g(f(1))g(f(1)):

  • f(1)=4e1=4ef(1) = 4e^1 = 4e
  • Now, g(f(1))=g(4e)=(4e)7=47e7=47e7g(f(1)) = g(4e) = (4e)^7 = 4^7 e^7 = 4^7 e^7

(c) f(g(x))f(g(x)):

  • g(x)=x7g(x) = x^7
  • Now, f(g(x))=f(x7)=4ex7f(g(x)) = f(x^7) = 4e^{x^7}

(d) g(f(x))g(f(x)):

  • f(x)=4exf(x) = 4e^x
  • Now, g(f(x))=g(4ex)=(4ex)7=47(ex)7=47e7xg(f(x)) = g(4e^x) = (4e^x)^7 = 4^7 (e^x)^7 = 4^7 e^{7x}

(e) f(t)g(t)f(t)g(t):

  • f(t)=4etf(t) = 4e^t
  • g(t)=t7g(t) = t^7
  • Now, f(t)g(t)=4ett7=4t7etf(t)g(t) = 4e^t \cdot t^7 = 4t^7 e^t

Let me know if you need further clarifications or more details on these computations!

Here are some related questions:

  1. What happens if we use a different base for g(x)g(x) instead of powers of 7?
  2. How would the answer change if f(x)f(x) was a polynomial function instead of exponential?
  3. How does the composition of two functions affect the overall growth rate?
  4. What are the derivatives of f(g(x))f(g(x)) and g(f(x))g(f(x))?
  5. Can these functions be inverted easily? What would f1(x)f^{-1}(x) and g1(x)g^{-1}(x) look like?

Tip: Always apply the chain rule when differentiating composite functions like f(g(x))f(g(x)).

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Function Composition
Exponential Functions
Polynomial Functions

Formulas

f(x) = 4e^x
g(x) = x^7
f(g(x)) = f(x^7) = 4e^{x^7}
g(f(x)) = g(4e^x) = (4e^x)^7 = 4^7 e^{7x}

Theorems

Properties of Exponentials
Properties of Polynomial Functions
Composition of Functions

Suitable Grade Level

Undergraduate Math or Calculus