Math Problem Statement

Solve all correctly

Solve all correctly

Solution

Let's solve all the problems step by step:


Problem 36:

Find (f+g)(x)(f+g)(x) and (fg)(x)(f-g)(x) where f(x)=9x2+4f(x) = 9x^2 + 4 and g(x)=108xg(x) = 10 - 8x.

  • Solution for (f+g)(x)(f+g)(x):
    (f+g)(x)=f(x)+g(x)=(9x2+4)+(108x)(f+g)(x) = f(x) + g(x) = (9x^2 + 4) + (10 - 8x)
    Combine like terms:
    (f+g)(x)=9x28x+14(f+g)(x) = 9x^2 - 8x + 14

  • Solution for (fg)(x)(f-g)(x):
    (fg)(x)=f(x)g(x)=(9x2+4)(108x)(f-g)(x) = f(x) - g(x) = (9x^2 + 4) - (10 - 8x)
    Distribute the negative and combine like terms:
    (fg)(x)=9x2+8x6(f-g)(x) = 9x^2 + 8x - 6


Problem 37:

Find (f+g)(x)(f+g)(x) and (fg)(x)(f \cdot g)(x) where f(x)=9x2+33x+28f(x) = 9x^2 + 33x + 28 and g(x)=3x+7g(x) = 3x + 7.

  • Solution for (f+g)(x)(f+g)(x):
    (f+g)(x)=f(x)+g(x)=(9x2+33x+28)+(3x+7)(f+g)(x) = f(x) + g(x) = (9x^2 + 33x + 28) + (3x + 7)
    Combine like terms:
    (f+g)(x)=9x2+36x+35(f+g)(x) = 9x^2 + 36x + 35

  • Solution for (fg)(x)(f \cdot g)(x):
    (fg)(x)=f(x)g(x)=(9x2+33x+28)(3x+7)(f \cdot g)(x) = f(x) \cdot g(x) = (9x^2 + 33x + 28)(3x + 7)
    Use distribution (FOIL method):
    fg=(9x2)(3x)+(9x2)(7)+(33x)(3x)+(33x)(7)+(28)(3x)+(28)(7)f \cdot g = (9x^2)(3x) + (9x^2)(7) + (33x)(3x) + (33x)(7) + (28)(3x) + (28)(7)
    Simplify each term:
    fg=27x3+63x2+99x2+231x+84x+196f \cdot g = 27x^3 + 63x^2 + 99x^2 + 231x + 84x + 196
    Combine like terms:
    (fg)(x)=27x3+162x2+315x+196(f \cdot g)(x) = 27x^3 + 162x^2 + 315x + 196


Problem 38:

Let f(x)=81x2f(x) = 81 - x^2 and g(x)=9xg(x) = 9 - x. Find (f+g)(x)(f+g)(x).

  • Solution for (f+g)(x)(f+g)(x):
    (f+g)(x)=f(x)+g(x)=(81x2)+(9x)(f+g)(x) = f(x) + g(x) = (81 - x^2) + (9 - x)
    Combine like terms:
    (f+g)(x)=x2x+90(f+g)(x) = -x^2 - x + 90

Problem 39:

Given f(x)=x2+3f(x) = x^2 + 3 and g(x)=x7xg(x) = \frac{x-7}{x}, find (gf)(1)(g \circ f)(1).

  • Step 1: Find f(1)f(1):
    f(x)=x2+3    f(1)=12+3=4f(x) = x^2 + 3 \implies f(1) = 1^2 + 3 = 4

  • Step 2: Find g(f(1))=g(4)g(f(1)) = g(4):
    g(x)=x7x    g(4)=474=34g(x) = \frac{x - 7}{x} \implies g(4) = \frac{4 - 7}{4} = \frac{-3}{4}

  • Final Answer:
    (gf)(1)=34(g \circ f)(1) = -\frac{3}{4}


Problem 40:

Given f(x)=7x2f(x) = 7x^2, find f1(x)f^{-1}(x) and state whether f1(x)f^{-1}(x) is a function.

  1. Step 1: Solve for xx in terms of yy:
    Let y=7x2y = 7x^2:
    y=7x2    x2=y7    x=±y7y = 7x^2 \implies x^2 = \frac{y}{7} \implies x = \pm \sqrt{\frac{y}{7}}

  2. Step 2: Solve for f1(x)f^{-1}(x):
    Replace yy with xx:
    f1(x)=±x7f^{-1}(x) = \pm \sqrt{\frac{x}{7}}

  3. Step 3: State whether f1(x)f^{-1}(x) is a function:
    Since f1(x)f^{-1}(x) has both a positive and negative square root, it is not a function because it fails the vertical line test.


Problem 41:

Use symmetry to graph the inverse of the given function.

  • Graph Analysis:
    To graph the inverse, reflect the given function across the line y=xy = x. The original graph will be symmetric with its inverse about this line.

Do you want detailed explanations or additional steps for any problem?

Here are 5 related questions to expand your learning:

  1. How do you find the composition of two functions, such as (gf)(x)(g \circ f)(x)?
  2. What conditions make the inverse of a function not a function?
  3. How can you use symmetry to graph an inverse function?
  4. How do you simplify the product of two polynomials?
  5. Why is the square root function sometimes not a proper inverse?

Tip: To check if a function has an inverse that is also a function, use the horizontal line test!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Function Addition and Subtraction
Function Composition
Function Inverses
Polynomial Multiplication
Graph Symmetry

Formulas

(f + g)(x) = f(x) + g(x)
(f - g)(x) = f(x) - g(x)
(f * g)(x) = f(x) * g(x)
Composition: (g ∘ f)(x) = g(f(x))
Inverse: y = f(x) → x = f⁻¹(y)

Theorems

Vertical Line Test
Horizontal Line Test
Symmetry about y = x for inverses

Suitable Grade Level

High School Algebra II or Pre-Calculus