Math Problem Statement
схема 17.варинт 10.Построить эпюры внутренних силовых факторов для рамы 4 учатка.Подобрать размеры поперечного сечения элементов рамы.если они имеют форму кольца(отношение внутреннего диаметра к наружному равно 0.6.форма прямоугольника=2.7)Допускаемое напряжение принять равным=160МПа.Собственным весом рамы пренебречь.
Solution
Task Summary:
You are tasked with:
- Constructing the internal force diagrams (shear force , bending moment , axial force ) for the given frame with 4 segments based on Scheme 17 and Variant 10.
- Selecting cross-sectional dimensions for the frame's elements:
- Circular cross-section: Ratio .
- Rectangular cross-section: .
- Given:
- Allowable stress: .
- Neglect self-weight of the frame.
Plan of Action:
-
Extract Data:
- From the provided table, identify all dimensions and loads for Variant 10.
- Key values: , etc.
-
Calculate Internal Forces:
- Use static equilibrium equations () to compute reactions.
- Construct diagrams for shear force, bending moment, and axial force across all segments.
-
Determine Stresses:
- For circular and rectangular cross-sections:
- Calculate section moduli and moment of inertia.
- Ensure .
- For circular and rectangular cross-sections:
-
Optimize Dimensions:
- For the circular cross-section, determine and based on stress and geometry.
- For the rectangular cross-section, determine and under the same conditions.
Step 1: Data Extraction from the Table
From Variant 10:
- Load
- Distributed load
- Geometry ratios:
- Circular:
- Rectangular:
Would you like me to proceed with Step 2 (internal force calculations) or focus on a specific part of the task? Let me know!
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Static equilibrium equations
Shear force and bending moment diagrams
Stress analysis
Cross-sectional optimization
Formulas
ΣFx = 0, ΣFy = 0, ΣM = 0 (Static equilibrium)
σmax = Mmax / W (Stress formula)
W = π/32 × (do^4 - di^4)/do (Circular section modulus)
W = bh^2/6 (Rectangular section modulus)
Theorems
Static equilibrium theorem
Strength of materials principles
Suitable Grade Level
University Engineering Level
Related Recommendation
Structural Load Calculations with Angles and Cross-Sectional Dimensions
Beam Bending Analysis: Build Shear Force and Moment Diagrams for a 4-Segment Beam
Inclined Bending Analysis of Rectangular Beam - Scheme 17 Variant 10
Structural Mechanics: Static Determinacy and Reactions in Frame and Truss
Geometric Characteristics and Moments of Inertia: Semicircle, Rectangle, and L-shaped Figure