Math Problem Statement

Define the functions 𝑓 , 𝑔: R → R as 𝑓 (𝑥) := 1 if0 <𝑥 < 1, 0 else,    and 𝑔(𝑥) :=      𝑥 if 0 < 𝑥 ≤ 1, 2 −𝑥 if1<𝑥 <2, 0 else. Compute the Fourier transform of 𝑔.

Solution

To compute the Fourier transform of the function g(x)g(x), we will proceed by analyzing g(x)g(x) as defined in different intervals. The function g(x)g(x) is defined as:

\begin{cases} x & \text{if } 0 < x \leq 1, \\ 2 - x & \text{if } 1 < x < 2, \\ 0 & \text{elsewhere}. \end{cases}$$ ### Fourier Transform Definition The Fourier transform of $$g(x)$$, denoted $$\hat{g}(k)$$, is given by: $$\hat{g}(k) = \int_{-\infty}^{\infty} g(x) e^{-2 \pi i k x} \, dx.$$ Since $$g(x)$$ is zero outside $$(0, 2)$$, we can restrict the limits of integration: $$\hat{g}(k) = \int_0^1 x e^{-2 \pi i k x} \, dx + \int_1^2 (2 - x) e^{-2 \pi i k x} \, dx.$$ ### Step 1: Compute the First Integral We compute: $$\int_0^1 x e^{-2 \pi i k x} \, dx.$$ Using integration by parts, let: - $$u = x \Rightarrow du = dx$$, - $$dv = e^{-2 \pi i k x} dx \Rightarrow v = \frac{e^{-2 \pi i k x}}{-2 \pi i k}$$. Then, $$\int_0^1 x e^{-2 \pi i k x} \, dx = \left. \frac{-x e^{-2 \pi i k x}}{2 \pi i k} \right|_0^1 + \int_0^1 \frac{e^{-2 \pi i k x}}{2 \pi i k} \, dx.$$ Evaluating at $$x = 1$$ and $$x = 0$$, we get: $$= \frac{-e^{-2 \pi i k}}{2 \pi i k} + \frac{1}{(2 \pi i k)^2} \left( e^{-2 \pi i k x} \right)_0^1.$$ Substitute and simplify this result. ### Step 2: Compute the Second Integral Now, we compute: $$\int_1^2 (2 - x) e^{-2 \pi i k x} \, dx.$$

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Fourier Transform
Piecewise Functions
Complex Exponentials
Integration by Parts

Formulas

Fourier Transform formula: \( \hat{g}(k) = \int_{-\infty}^{\infty} g(x) e^{-2 \pi i k x} \, dx \)
Integration by parts: \( \int u \, dv = uv - \int v \, du \)

Theorems

Fourier Transform theorem for piecewise functions

Suitable Grade Level

University Level (Calculus and Fourier Analysis)