Math Problem Statement

resolve

Un fluido (agua) fluye cómo muestra la figura. Calcular la velocidad de salida del líquido en el punto 2, la cantidad de líquido que sale por segundo (caudal), la velocidad del líquido en la sección 3, y la presión en la sección 3.

Solution

To solve this problem, let's break it down step-by-step using fluid dynamics principles, specifically Bernoulli's equation and the continuity equation.

Given Data and Observations:

  1. Fluid: Water, with density ρ\rho.
  2. Point 1 (top of the cistern): Diameter is much larger than the pipe, implying v10v_1 \approx 0.
  3. Height (hh) from point 1 to point 2: 1.25 m.
  4. Point 2: Open to the atmosphere, so p2=patmp_2 = p_{atm}.
  5. Diameters:
    • Section before point 2: 8 cm8 \text{ cm} (radius r2=0.04 mr_2 = 0.04 \text{ m})
    • Section at point 3: 6 cm6 \text{ cm} (radius r3=0.03 mr_3 = 0.03 \text{ m})

Calculations:

Let's approach each part as stated:

(a) Velocity at Point 2, v2v_2

Using Bernoulli’s equation between points 1 and 2: p1+12ρv12+ρgh=p2+12ρv22p_1 + \frac{1}{2} \rho v_1^2 + \rho g h = p_2 + \frac{1}{2} \rho v_2^2 Since v10v_1 \approx 0 and p1=p2=patmp_1 = p_2 = p_{atm}, the equation simplifies to: ρgh=12ρv22\rho g h = \frac{1}{2} \rho v_2^2 Solving for v2v_2: v2=2gh=29.81m/s21.25mv_2 = \sqrt{2gh} = \sqrt{2 \cdot 9.81 \, \text{m/s}^2 \cdot 1.25 \, \text{m}} v24.95m/sv_2 \approx 4.95 \, \text{m/s}

(b) Flow Rate QQ

The flow rate QQ is given by: Q=A2v2Q = A_2 v_2 where A2A_2 is the cross-sectional area at point 2: A2=πr22=π(0.04m)2A_2 = \pi r_2^2 = \pi (0.04 \, \text{m})^2 A20.005024m2A_2 \approx 0.005024 \, \text{m}^2 Now, calculate QQ: Q=0.005024m2×4.95m/sQ = 0.005024 \, \text{m}^2 \times 4.95 \, \text{m/s} Q0.0249m3/s0.025m3/sQ \approx 0.0249 \, \text{m}^3/\text{s} \approx 0.025 \, \text{m}^3/\text{s}

(c) Velocity at Point 3, v3v_3

Using the continuity equation A2v2=A3v3A_2 v_2 = A_3 v_3: v3=A2v2A3v_3 = \frac{A_2 v_2}{A_3} where A3=πr32=π(0.03m)2A_3 = \pi r_3^2 = \pi (0.03 \, \text{m})^2: A30.002827m2A_3 \approx 0.002827 \, \text{m}^2 v3=0.005024m2×4.95m/s0.002827m2v_3 = \frac{0.005024 \, \text{m}^2 \times 4.95 \, \text{m/s}}{0.002827 \, \text{m}^2} v38.8m/sv_3 \approx 8.8 \, \text{m/s}

(d) Pressure at Point 3, p3p_3

Applying Bernoulli’s equation between points 2 and 3: p2+12ρv22=p3+12ρv32p_2 + \frac{1}{2} \rho v_2^2 = p_3 + \frac{1}{2} \rho v_3^2 Since p2=patmp_2 = p_{atm}, solve for p3p_3: p3=p2+12ρ(v22v32)p_3 = p_2 + \frac{1}{2} \rho (v_2^2 - v_3^2) Substitute v2=4.95m/sv_2 = 4.95 \, \text{m/s} and v3=8.8m/sv_3 = 8.8 \, \text{m/s}: p3=patm+12ρ(4.9528.82)p_3 = p_{atm} + \frac{1}{2} \rho (4.95^2 - 8.8^2) Assuming ρ=1000kg/m3\rho = 1000 \, \text{kg/m}^3 for water: p3=patm+121000kg/m3(58.9475m2/s2)p_3 = p_{atm} + \frac{1}{2} \cdot 1000 \, \text{kg/m}^3 \cdot (-58.9475 \, \text{m}^2/\text{s}^2) p3=patm29473.75Pap_3 = p_{atm} - 29473.75 \, \text{Pa} Convert to atm (1atm101325Pa1 \, \text{atm} \approx 101325 \, \text{Pa}): p30.75atmp_3 \approx 0.75 \, \text{atm}

Summary of Results:

  1. Velocity at Point 2, v2v_2: 4.95m/s4.95 \, \text{m/s}
  2. Flow Rate QQ: 0.025m3/s0.025 \, \text{m}^3/\text{s}
  3. Velocity at Point 3, v3v_3: 8.8m/s8.8 \, \text{m/s}
  4. Pressure at Point 3, p3p_3: 0.75atm0.75 \, \text{atm}

Would you like more details on any of the steps or have any questions?


Here are five related questions for further exploration:

  1. How would the results change if the height hh was increased?
  2. What would be the effect on v3v_3 if the radius at point 3 was altered?
  3. How does Bernoulli’s equation apply if the fluid was not incompressible?
  4. What would happen to the flow rate if the fluid density changed?
  5. How would the pressure at point 3 change if it was not open to the atmosphere?

Tip: Remember that in fluid dynamics, using Bernoulli's principle requires assumptions of steady, incompressible, and non-viscous flow. Always check if these assumptions hold in practical situations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Fluid Dynamics
Bernoulli's Equation
Continuity Equation
Pressure
Velocity

Formulas

Bernoulli's equation: p1 + (1/2)ρv1^2 + ρgh = p2 + (1/2)ρv2^2
Continuity equation: A1v1 = A2v2
Flow rate (Q): Q = A * v
Cross-sectional area: A = πr^2

Theorems

Bernoulli's Principle
Continuity Principle

Suitable Grade Level

College