Math Problem Statement

Solve the first order linear initial value problem dy/dx +2y = 2 - 7x, y(0)=0

Solution

The given problem is a first-order linear differential equation with an initial condition:

dydx+2y=27x,y(0)=0\frac{dy}{dx} + 2y = 2 - 7x, \quad y(0) = 0

Step 1: Identify the standard form

A first-order linear differential equation has the form:

dydx+P(x)y=Q(x)\frac{dy}{dx} + P(x)y = Q(x)

In this case, P(x)=2P(x) = 2 and Q(x)=27xQ(x) = 2 - 7x.

Step 2: Find the integrating factor

The integrating factor is given by:

μ(x)=eP(x)dx=e2dx=e2x\mu(x) = e^{\int P(x) \, dx} = e^{\int 2 \, dx} = e^{2x}

Step 3: Multiply the differential equation by the integrating factor

Multiply the entire equation by e2xe^{2x}:

e2xdydx+2e2xy=e2x(27x)e^{2x} \frac{dy}{dx} + 2e^{2x} y = e^{2x} (2 - 7x)

The left-hand side simplifies to:

ddx(e2xy)=e2x(27x)\frac{d}{dx} \left( e^{2x} y \right) = e^{2x} (2 - 7x)

Step 4: Integrate both sides

Now integrate both sides with respect to xx:

ddx(e2xy)dx=e2x(27x)dx\int \frac{d}{dx} \left( e^{2x} y \right) dx = \int e^{2x} (2 - 7x) dx

The left side simplifies to:

e2xy=e2x(27x)dxe^{2x} y = \int e^{2x} (2 - 7x) \, dx

Step 5: Compute the integral

To compute e2x(27x)dx\int e^{2x} (2 - 7x) \, dx, break it into two parts:

  1. 2e2xdx=22e2x=e2x\int 2e^{2x} \, dx = \frac{2}{2} e^{2x} = e^{2x}
  2. 7xe2xdx\int -7x e^{2x} \, dx

Use integration by parts for the second integral. Let:

  • u=xu = x, so du=dxdu = dx
  • dv=7e2xdxdv = -7e^{2x} dx, so v=72e2xv = \frac{-7}{2} e^{2x}

Using the formula udv=uvvdu\int u dv = uv - \int v du, we get:

7xe2xdx=7x2e2x+72e2xdx=7x2e2x+74e2x\int -7x e^{2x} dx = \frac{-7x}{2} e^{2x} + \int \frac{7}{2} e^{2x} dx = \frac{-7x}{2} e^{2x} + \frac{7}{4} e^{2x}

Thus, the integral becomes:

e2xy=e2x7x2e2x+74e2xe^{2x} y = e^{2x} - \frac{7x}{2} e^{2x} + \frac{7}{4} e^{2x}

Step 6: Solve for y(x)y(x)

Now divide both sides by e2xe^{2x}:

y=17x2+74y = 1 - \frac{7x}{2} + \frac{7}{4}

Simplify:

y(x)=1147x2y(x) = \frac{11}{4} - \frac{7x}{2}

Step 7: Apply the initial condition

Use the initial condition y(0)=0y(0) = 0:

0=114702=1140 = \frac{11}{4} - \frac{7 \cdot 0}{2} = \frac{11}{4}

This leads to a contradiction with the initial condition, suggesting an issue in the setup. Let's revisit

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

First-order linear differential equations
Initial value problems
Integrating factor method

Formulas

Standard form: dy/dx + P(x)y = Q(x)
Integrating factor: μ(x) = e^(∫P(x) dx)
Solution form: y(x) = (1/μ(x)) ∫μ(x)Q(x) dx

Theorems

Method of integrating factors

Suitable Grade Level

University Level (Calculus II or Differential Equations)