Math Problem Statement

¿Cuál es el valor de x tal que det(A) = -51?, donde A = [ [x-2, 4, 2], [-2, 1, 3], [x-4, 3, -2] ]

Solution

This problem requires finding the value of xx such that the determinant of the matrix AA is equal to 51-51. Let's calculate the determinant and solve for xx.

The matrix AA is:

x-2 & 4 & 2 \\ -2 & 1 & 3 \\ x-4 & 3 & -2 \end{bmatrix}$$ The determinant of $$A$$ can be expanded as: $$\det(A) = (x-2) \det\begin{bmatrix} 1 & 3 \\ 3 & -2 \end{bmatrix} - 4 \det\begin{bmatrix} -2 & 3 \\ x-4 & -2 \end{bmatrix} + 2 \det\begin{bmatrix} -2 & 1 \\ x-4 & 3 \end{bmatrix}$$ ### Step 1: Compute the sub-determinants 1. $$\det\begin{bmatrix} 1 & 3 \\ 3 & -2 \end{bmatrix} = (1)(-2) - (3)(3) = -2 - 9 = -11$$ 2. $$\det\begin{bmatrix} -2 & 3 \\ x-4 & -2 \end{bmatrix} = (-2)(-2) - (3)(x-4) = 4 - 3(x-4) = 4 - 3x + 12 = 16 - 3x$$ 3. $$\det\begin{bmatrix} -2 & 1 \\ x-4 & 3 \end{bmatrix} = (-2)(3) - (1)(x-4) = -6 - (x-4) = -6 - x + 4 = -2 - x$$ ### Step 2: Expand the determinant $$\det(A) = (x-2)(-11) - 4(16 - 3x) + 2(-2 - x)$$ Simplify each term: 1. $$(x-2)(-11) = -11x + 22$$ 2. $$-4(16 - 3x) = -64 + 12x$$ 3. $$2(-2 - x) = -4 - 2x$$ Combine these terms: $$\det(A) = -11x + 22 - 64 + 12x - 4 - 2x$$ $$\det(A) = (-11x + 12x - 2x) + (22 - 64 - 4)$$ $$\det(A) = -x - 46$$ ### Step 3: Solve for $$x$$ when $$\det(A) = -51$$ $$-x - 46 = -51$$ $$-x = -51 + 46$$ $$-x = -5 \implies x = 5$$ ### Final Answer: The value of $$x$$ is **5** (Option d). --- Would you like a detailed walkthrough of any step? Here are five related questions to expand your understanding: 1. How can we use cofactor expansion to calculate determinants for larger matrices? 2. Why does setting $$\det(A) = -51$$ help us solve for $$x$$? 3. What are the properties of determinants that simplify matrix calculations? 4. How does a zero determinant relate to the invertibility of a matrix? 5. What happens if multiple values of $$x$$ satisfy $$\det(A) = k$$? **Tip:** Always double-check signs when calculating determinants, as a small error can lead to incorrect results!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Determinants

Formulas

Determinant calculation using cofactor expansion

Theorems

Properties of determinants

Suitable Grade Level

Grades 10-12