Math Problem Statement

Re(z n )=0, where 𝑧

3 + 𝑖 z= 3 ​ +i.

Solution

You are asked to find the values of nn such that the real part of znz^n equals 0, where z=3+iz = 3 + i.

Step 1: Express zz in polar form.

First, let's write z=3+iz = 3 + i in polar form. The modulus z|z| and argument arg(z)\arg(z) are computed as follows:

  • Modulus: z=32+12=9+1=10|z| = \sqrt{3^2 + 1^2} = \sqrt{9 + 1} = \sqrt{10}

  • Argument: arg(z)=tan1(13)\arg(z) = \tan^{-1}\left(\frac{1}{3}\right)

So, the polar form of zz is: z=z(cos(arg(z))+isin(arg(z)))z = |z| \left( \cos(\arg(z)) + i \sin(\arg(z)) \right) z=10(cos(θ)+isin(θ))z = \sqrt{10} \left( \cos(\theta) + i \sin(\theta) \right) where θ=arg(z)=tan1(13)\theta = \arg(z) = \tan^{-1}\left(\frac{1}{3}\right).

Step 2: Compute znz^n.

Using De Moivre’s Theorem, we can express znz^n as: zn=(10)n(cos(nθ)+isin(nθ))z^n = \left( \sqrt{10} \right)^n \left( \cos(n\theta) + i \sin(n\theta) \right) The real part of znz^n is given by: Re(zn)=(10)ncos(nθ)\text{Re}(z^n) = \left( \sqrt{10} \right)^n \cos(n\theta)

Step 3: Set the real part to 0.

We want the real part to be 0, so we set: (10)ncos(nθ)=0\left( \sqrt{10} \right)^n \cos(n\theta) = 0 Since (10)n0\left( \sqrt{10} \right)^n \neq 0 for any real nn, it follows that: cos(nθ)=0\cos(n\theta) = 0

The cosine function is 0 when: nθ=π2+kπfor some integer kn\theta = \frac{\pi}{2} + k\pi \quad \text{for some integer } k Thus: ntan1(13)=π2+kπn \cdot \tan^{-1}\left( \frac{1}{3} \right) = \frac{\pi}{2} + k\pi Solving for nn, we get: n=π2+kπtan1(13)n = \frac{\frac{\pi}{2} + k\pi}{\tan^{-1}\left( \frac{1}{3} \right)}

Step 4: Find the numerical value.

To get a numerical answer, we need the value of θ=tan1(13)\theta = \tan^{-1}\left( \frac{1}{3} \right), which is approximately: θ0.32175radians\theta \approx 0.32175 \, \text{radians} Therefore: n=π2+kπ0.32175n = \frac{\frac{\pi}{2} + k\pi}{0.32175} n1.5708+kπ0.32175n \approx \frac{1.5708 + k\pi}{0.32175} For integer values of kk, you can compute specific values for nn.


Would you like to go further and calculate specific values of nn for different kk values? Or do you have any questions about this process?

Related Questions:

  1. How do you compute the argument of a complex number in polar form?
  2. Can De Moivre’s Theorem be applied to any complex number?
  3. What are the principal values of the argument for complex numbers?
  4. How do you find the real and imaginary parts of powers of complex numbers?
  5. What is the geometric interpretation of multiplying complex numbers in polar form?

Tip: When working with complex numbers, converting to polar form can make operations like raising to powers or extracting roots much easier than working directly in rectangular form!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Polar Form
Trigonometry
De Moivre's Theorem

Formulas

|z| = sqrt(x^2 + y^2)
arg(z) = tan^-1(y/x)
z^n = r^n (cos(nθ) + i sin(nθ))
Re(z^n) = r^n cos(nθ)
cos(nθ) = 0

Theorems

De Moivre's Theorem
Properties of Complex Numbers

Suitable Grade Level

Grades 11-12