Math Problem Statement

On the diagram below, \(\vec{AB} = \vec{a}\) and \(\vec{AC} = \vec{b}\) and \(\vec{CD} = 2\vec{BC}\). N is the point on AD such that \(\vec{AN} = k\vec{AD}\) and \(\vec{NC}\) is parallel to \(\vec{AB}\). Find the value of k.

Solution

We are given the following:

  • AB=a\vec{AB} = \vec{a}, AC=b\vec{AC} = \vec{b}
  • CD=2BC\vec{CD} = 2 \vec{BC}
  • NCAB\vec{NC} \parallel \vec{AB}
  • AN=kAD\vec{AN} = k \vec{AD}

From the problem, we also know:

  • BC=ba\vec{BC} = \vec{b} - \vec{a}
  • AD=3b2a\vec{AD} = 3\vec{b} - 2\vec{a}

We are tasked with finding the value of kk.

Step-by-Step Solution:

  1. Use the given relation for CD\vec{CD}: Since CD=2BC\vec{CD} = 2\vec{BC}, and we know that BC=ba\vec{BC} = \vec{b} - \vec{a}, we substitute: CD=2(ba)=2b2a\vec{CD} = 2(\vec{b} - \vec{a}) = 2\vec{b} - 2\vec{a}

  2. Find the vector ND\vec{ND}: The point NN lies on ADAD, and we are given that AN=kAD\vec{AN} = k \vec{AD}. This means: AN=k(3b2a)\vec{AN} = k(3\vec{b} - 2\vec{a}) Hence, the vector ND\vec{ND} is: ND=ADAN=(3b2a)k(3b2a)=(1k)(3b2a)\vec{ND} = \vec{AD} - \vec{AN} = (3\vec{b} - 2\vec{a}) - k(3\vec{b} - 2\vec{a}) = (1 - k)(3\vec{b} - 2\vec{a})

  3. Use the condition that NCAB\vec{NC} \parallel \vec{AB}: Since NCAB\vec{NC} \parallel \vec{AB}, we know that NC=λAB\vec{NC} = \lambda \vec{AB} for some scalar λ\lambda, where AB=a\vec{AB} = \vec{a}. So, NC=λa\vec{NC} = \lambda \vec{a}

  4. Find NC\vec{NC}: From the diagram, NC=ACAN\vec{NC} = \vec{AC} - \vec{AN}, so: NC=bk(3b2a)=bk(3b)+k(2a)=(13k)b+2ka\vec{NC} = \vec{b} - k(3\vec{b} - 2\vec{a}) = \vec{b} - k(3\vec{b}) + k(2\vec{a}) = (1 - 3k)\vec{b} + 2k\vec{a}

  5. Equate NC\vec{NC} to λa\lambda \vec{a}: From step 3, NC=λa\vec{NC} = \lambda \vec{a}. Therefore, we equate: (13k)b+2ka=λa(1 - 3k)\vec{b} + 2k\vec{a} = \lambda \vec{a} For the vector equation to hold, the coefficients of a\vec{a} and b\vec{b} must match separately. So, the coefficient of b\vec{b} gives: 13k=0k=131 - 3k = 0 \quad \Rightarrow \quad k = \frac{1}{3}

Thus, the value of kk is 13\boxed{\frac{1}{3}}.

Would you like a further breakdown of any steps or have questions?

Additional questions to explore:

  1. How do you calculate the position vector of point NN given kk?
  2. Why is the condition NCAB\vec{NC} \parallel \vec{AB} crucial for determining kk?
  3. What would change if CD2BC\vec{CD} \neq 2 \vec{BC}?
  4. How is the vector AD\vec{AD} calculated from AB\vec{AB} and AC\vec{AC}?
  5. How do we check if two vectors are parallel using their components?

Tip:

Always break down vector equations into their components to handle parallel or perpendicular conditions easily.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vectors
Parallel Vectors
Vector Addition

Formulas

\(\vec{CD} = 2(\vec{b} - \vec{a})\)
\(\vec{ND} = (1 - k)(3\vec{b} - 2\vec{a})\)
\(\vec{NC} = (1 - 3k)\vec{b} + 2k\vec{a}\)

Theorems

Vector Parallelism
Vector Addition

Suitable Grade Level

Grades 11-12