Math Problem Statement
Solution
To find the coordinates of point given the midpoint of and the coordinates of , we can use the midpoint formula.
The midpoint of a line segment with endpoints and is given by:
In this problem:
- The midpoint has coordinates .
- The coordinates of are .
Let have coordinates . Plugging into the midpoint formula:
Now, we solve for and by setting up two equations:
Solving for :
Multiply both sides by 2: Subtract 4 from both sides:
Solving for :
Multiply both sides by 2: Subtract 1 from both sides:
Conclusion
The coordinates of point are .
Would you like further explanation on the steps, or do you have additional questions?
Here are some related questions:
- What is the midpoint formula, and how is it derived?
- How would you find a missing endpoint if only the midpoint and one endpoint are known?
- What are some real-life applications of the midpoint formula?
- How can you verify if a point is indeed the midpoint of a segment?
- How would you use this method in three-dimensional space?
Tip: When finding a missing endpoint, always remember to double the midpoint values before subtracting the known endpoint's coordinates.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Coordinate Geometry
Midpoint Formula
Algebra
Formulas
Midpoint formula: M = ((x1 + x2) / 2, (y1 + y2) / 2)
Theorems
-
Suitable Grade Level
Grades 7-9
Related Recommendation
Find the Endpoint of a Line Segment Given One Endpoint and Midpoint
Find the Missing Endpoint with Midpoint at (-7, -3)
Finding the Missing Endpoint with Midpoint at (2, 3) and Endpoint (-8, -5)
Find the Coordinates of Endpoint S Using Midpoint Formula
Finding Coordinates of Endpoint S Using Midpoint Formula