Math Problem Statement

find the global maxima and minimum for the function f (x, y, z) = x^3 − y^3 + z^2 subject to the constraint 2x^2 + y^2 + z^2 ≤ 2.

Solution

To find the global maxima and minima of the function f(x,y,z)=x3y3+z2f(x, y, z) = x^3 - y^3 + z^2 subject to the constraint 2x2+y2+z222x^2 + y^2 + z^2 \leq 2, we can follow these steps:

1. Define the Problem:

  • Objective function: f(x,y,z)=x3y3+z2f(x, y, z) = x^3 - y^3 + z^2
  • Constraint: g(x,y,z)=2x2+y2+z22g(x, y, z) = 2x^2 + y^2 + z^2 \leq 2

2. Use Lagrange Multiplier Method:

Since we have a constraint, we can solve this using the method of Lagrange multipliers. The Lagrange multiplier method states that at the maximum or minimum of the function f(x,y,z)f(x, y, z), the gradient of f(x,y,z)f(x, y, z) is parallel to the gradient of the constraint g(x,y,z)g(x, y, z). This gives us the system:

f(x,y,z)=λg(x,y,z)\nabla f(x, y, z) = \lambda \nabla g(x, y, z)

3. Compute the Gradients:

  • Gradient of f(x,y,z)f(x, y, z):

f(x,y,z)=(fx,fy,fz)=(3x2,3y2,2z)\nabla f(x, y, z) = \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right) = (3x^2, -3y^2, 2z)

  • Gradient of g(x,y,z)g(x, y, z):

g(x,y,z)=(gx,gy,gz)=(4x,2y,2z)\nabla g(x, y, z) = \left( \frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z} \right) = (4x, 2y, 2z)

4. Set Up the System of Equations:

From the method of Lagrange multipliers, we equate the gradients:

(3x2,3y2,2z)=λ(4x,2y,2z)(3x^2, -3y^2, 2z) = \lambda (4x, 2y, 2z)

This gives us the following system of equations:

  1. 3x2=4λx3x^2 = 4\lambda x
  2. 3y2=2λy-3y^2 = 2\lambda y
  3. 2z=2λz2z = 2\lambda z

5. Solve the System of Equations:

We now solve each equation:

1. Solve 3x2=4λx3x^2 = 4\lambda x:

If x0x \neq 0, divide both sides by xx:

3x=4λλ=3x43x = 4\lambda \quad \Rightarrow \quad \lambda = \frac{3x}{4}

2. Solve 3y2=2λy-3y^2 = 2\lambda y:

If y0y \neq 0, divide both sides by yy:

3y=2λλ=3y2-3y = 2\lambda \quad \Rightarrow \quad \lambda = \frac{-3y}{2}

3. Solve 2z=2λz2z = 2\lambda z:

If z0z \neq 0, divide both sides by 2z2z:

1=λ1 = \lambda

6. Analyze the Cases:

We now consider the cases for each variable being zero and non-zero.

Case 1: z=0z = 0

From equation (3), λ=1\lambda = 1.

Now substitute λ=1\lambda = 1 into the other equations:

  • From equation (1): 3x2=4x3x^2 = 4x, we get x(3x4)=0x(3x - 4) = 0, so x=0x = 0 or x=43x = \frac{4}{3}.
  • From equation (2): 3y2=2y-3y^2 = 2y, we get y(3y+2)=0y(3y + 2) = 0, so y=0y = 0 or y=23y = -\frac{2}{3}.

So, the possible solutions are (x,y,z)=(0,0,0),(43,0,0),(0,23,0)(x, y, z) = (0, 0, 0), \left(\frac{4}{3}, 0, 0\right), (0, -\frac{2}{3}, 0).

Case 2: x=0x = 0

From equation (1), 3x2=4λx3x^2 = 4\lambda x, this is automatically satisfied since x=0x = 0.

  • From equation (2): 3y2=2λy-3y^2 = 2\lambda y, we get y=0y = 0 or y=23y = -\frac{2}{3}.
  • From equation (3): 2z=2λz2z = 2\lambda z, we get λ=1\lambda = 1, so z0z \neq 0.

Check g(x,y,z)2g(x, y, z) \leq 2:

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Multivariable Calculus
Optimization
Lagrange Multipliers
Gradient Descent

Formulas

f(x, y, z) = x^3 - y^3 + z^2
g(x, y, z) = 2x^2 + y^2 + z^2 ≤ 2
∇f(x, y, z) = λ∇g(x, y, z)

Theorems

Lagrange Multiplier Theorem

Suitable Grade Level

College-level