Math Problem Statement

if f(x) = (x²+1)/2 and fog(2-x) = x+2 what is the value of g(x)

Solution

We are tasked to find g(x)g(x), given:

  1. f(x)=x2+12f(x) = \frac{x^2 + 1}{2}
  2. f(g(2x))=x+2f(g(2-x)) = x+2

Step-by-Step Solution:

1. Define f(g(2x))f(g(2-x)):

Substituting f(x)=x2+12f(x) = \frac{x^2 + 1}{2} into f(g(2x))=x+2f(g(2-x)) = x+2, we get: f(g(2x))=(g(2x))2+12f(g(2-x)) = \frac{(g(2-x))^2 + 1}{2} Thus: (g(2x))2+12=x+2\frac{(g(2-x))^2 + 1}{2} = x + 2


2. Eliminate the fraction:

Multiply through by 2: (g(2x))2+1=2(x+2)(g(2-x))^2 + 1 = 2(x+2) Simplify the right-hand side: (g(2x))2+1=2x+4(g(2-x))^2 + 1 = 2x + 4 Subtract 1 from both sides: (g(2x))2=2x+3(g(2-x))^2 = 2x + 3


3. Solve for g(2x)g(2-x):

Take the square root of both sides: g(2x)=±2x+3g(2-x) = \pm \sqrt{2x + 3}


4. Express g(x)g(x):

Since g(2x)=±2x+3g(2-x) = \pm \sqrt{2x + 3}, let x2yx \to 2-y, so g(y)=±42y+3g(y) = \pm \sqrt{4 - 2y + 3}. Simplify: g(x)=±2x+7g(x) = \pm \sqrt{-2x + 7}

Thus, the possible forms of g(x)g(x) are: g(x)=2x+7org(x)=2x+7.g(x) = \sqrt{-2x + 7} \quad \text{or} \quad g(x) = -\sqrt{-2x + 7}.


Final Answer:

g(x)=±2x+7.g(x) = \pm \sqrt{-2x + 7}.

Would you like me to explain further steps or verify a specific case?


Related Questions:

  1. How do you verify if g(x)g(x) satisfies the given f(g(2x))f(g(2-x))?
  2. What happens if g(x)g(x) takes only one branch of ±2x+7\pm \sqrt{-2x + 7}?
  3. How do you check the domain of g(x)g(x)?
  4. What is the behavior of g(x)g(x) when xx \to \infty?
  5. How does the solution change if f(x)f(x) has a different expression?

Tip: Always consider the domain of the function when dealing with square roots, as the argument under the square root must be non-negative.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Function Composition
Square Root Functions
Algebra
Quadratic Functions

Formulas

f(x) = (x² + 1)/2
f(g(2-x)) = x + 2

Theorems

Function Composition
Square Root Properties

Suitable Grade Level

Grades 11-12